动态手语识别综述
作者:
基金项目:

国家自然科学基金面上项目(62171246); 山东省自然科学基金重大基础研究项目(ZR2021ZD12)


Survey on Dynamic Sign Language Recognition
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    手语是用手势比量动作, 根据手势的变化模拟形象或者音节以构成的一定意思或词语, 手语是听力障碍者或无法用言语交流的人普遍采用的一种交际工具. 随着计算机视觉和深度学习的不断发展, 手语识别技术随之出现并不断发展, 使普通人与聋哑人士交流成为可能. 然而, 动态手语的复杂性和变化性使得对手语的精确检测和识别仍具挑战. 为了推动该领域的研究, 本文深入调研现有的动态手语识别方法和技术. 首先, 调研了动态手语识别技术的发展历程和研究现状、常用动态手语数据集以及手语识别方法的评价指标. 其次, 重点调研了动态手语识别常用的深度学习模型, 探讨了动态手语识别技术面临的问题以及对应的解决方案. 最后, 基于手语识别现状, 总结了当前动态手语识别面临的问题, 并对下阶段如何提升手语识别性能进行分析和展望.

    Abstract:

    Sign language is a communication tool commonly used by people with hearing impairments or those who are unable to communicate verbally. It utilizes gestures to convey actions and simulate images or syllables that form specific meanings or words. With the continuous development of computer vision and deep learning, sign language recognition technology has emerged and continued to develop, making it possible for hearing individuals to communicate with the deaf or mute. However, the complexity and variability of dynamic sign language still pose challenges for its accurate detection and recognition. To promote research in this field, this study conducts an in-depth review of existing dynamic sign language recognition methods and technologies. First, the development history and current research status of dynamic sign language recognition technology, commonly used dynamic sign language datasets, and evaluation metrics for sign language recognition methods are reviewed. Second, deep learning models frequently used in dynamic sign language recognition are examined, and the challenges faced by dynamic sign language recognition technology, along with corresponding solutions, are discussed. Finally, based on the current status of sign language recognition, the challenges of dynamic sign language recognition are summarized, and an analysis and outlook are provided regarding the potential improvements to sign language recognition performance in the next stage.

    参考文献
    相似文献
    引证文献
引用本文

王哲楷,冯云霞,王佳文.动态手语识别综述.计算机系统应用,,():1-13

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-16
  • 最后修改日期:2024-09-24
  • 在线发布日期: 2025-04-01
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号