融合改进注意力的自适应双分支密集行人检测
作者:
基金项目:

辽宁省教育厅基本科研项目(JYTMS20230804); 辽宁工程技术大学学科创新团队(LNTU20TD-23)


Adaptive Dual-branch Dense Pedestrian Detection with Improved Attention
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为解决复杂背景干扰导致的行人检测精度低和漏检率高的问题, 本文提出一种融合改进注意力的自适应双分支密集行人检测算法DACD-YOLO. 首先, 主干网络采用自适应融合双分支结构, 通过动态权重实现不同特征的融合, 并引入深度可分离卷积降低计算量, 有效缓解传统单分支网络中信息丢失的问题; 其次, 提出自适应视觉中心, 通过动态优化增强层内特征提取, 并重设通道数以平衡精度与计算量; 然后, 提出坐标双通道注意力机制, 结合异构卷积核设计轻量化融合模块, 降低计算复杂度并增强对关键特征的捕捉能力; 最后, 采用膨胀卷积检测头, 通过不同膨胀率卷积融合多尺度特征, 有效增强小目标和遮挡目标的特征提取能力. 实验结果表明, 与原版YOLOv8n相比, 改进算法在WiderPerson数据集上的mAP@0.5和mAP@0.5:0.95分别提高2.3%和2.2%, 在CrowdHuman数据集上mAP@0.5和mAP@0.5:0.95分别提升3.5%和4.6%. 实验证明, 改进算法在密集行人检测方面相较于原算法具有显著的精度提升.

    Abstract:

    To address the low accuracy and high miss detection rates in pedestrian detection caused by complex background interference, this study proposes an adaptive dual-branch dense pedestrian detection algorithm, DACD-YOLO, incorporating improved attention mechanisms. First, the backbone network employs an adaptive dual-branch structure, which fuses different features through dynamic weighting while introducing depthwise separable convolution to reduce the computational cost, effectively mitigating the information loss present in traditional single-branch networks. Second, an adaptive vision center is proposed to enhance intra-layer feature extraction through dynamic optimization, with channel numbers reconfigured to balance accuracy and computational load. A coordinate dual-channel attention mechanism is then introduced, combining a heterogeneous convolution kernel design within a lightweight fusion module to reduce computational complexity and improve the capture of key features. Lastly, a dilation convolution detection head is utilized, fusing multi-scale features through convolutions with varying dilation rates, effectively enhancing feature extraction for small and occluded objects. Experimental results show that, compared to the original YOLOv8n, the proposed algorithm improves mAP@0.5 and mAP@0.5:0.95 by 2.3% and 2.2%, respectively, on the WiderPerson dataset, and by 3.5% and 4.6%, respectively, on the CrowdHuman dataset. The experiments demonstrate that the proposed algorithm significantly enhances accuracy in dense pedestrian detection compared to the original method.

    参考文献
    相似文献
    引证文献
引用本文

李建东,焦晓光,曲海成.融合改进注意力的自适应双分支密集行人检测.计算机系统应用,,():1-14

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-18
  • 最后修改日期:2024-12-09
  • 在线发布日期: 2025-04-01
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号