基于改进RT-DETR的道路缺陷检测
作者:
基金项目:

科技创新特区计划 (20-163-14-LZ-001-004-01)


Road Defect Detection Based on Improved RT-DETR
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    道路损坏对道路的使用寿命和安全性构成极大威胁, 及早发现道路损坏有利于进行维护和修理. 传统的道路缺陷检测技术通常依赖于手动视觉检测和车载道路路面监控系统, 然而这些方法在很大程度上受道路维护人员经验的影响. 随着深度学习的发展, 越来越多的研究者将其应用于道路缺陷检测领域, 其中最常见的当属YOLO系列目标检测方法及其各种变体. 但这类方法大多需要进行后处理操作, 这会阻碍模型优化、损害鲁棒性并导致检测器延迟推理. 针对这些问题以及道路缺陷检测中存在的多尺度问题, 本文提出了改进后的RT-DETR模型, 对主干网络的结构进行了微调, 并提出了MSaE注意力机制. 在编码器部分, 使用GhostConv卷积和DySample模块优化了上采样, 使用ADown模块优化了下采样. 本文在公开数据集SVRDD中进行了对比实验. 实验结果表明, 本文提出的改进方法在SVRDD 数据集中的mAP@50指标达到了72.5%, 相较于基准的RT-DETR-R18提高了3.8个百分点, 有效提升了道路缺陷检测能力.

    Abstract:

    Road damage poses a great threat to the service life and safety of roads. Early detection of road defects facilitates maintenance and repair. Traditional road defect detection methods typically rely on manual visual inspection and vehicle-mounted pavement monitoring systems. However, these methods are largely influenced by the experience of road maintenance personnel. With the advancement of deep learning, increasing numbers of researchers have applied it to road defect detection. Among these, the YOLO series of object detection methods and their various variants are the most common. However, most of these methods require post-processing operations, which hinder model optimization, impair robustness, and lead to delayed inference by the detector. To address these issues, as well as the multi-scale challenges in road defect detection, an improved RT-DETR model is proposed. The backbone network is fine-tuned, and the MSaE attention module is introduced. In the encoder, GhostConv convolution and DySample module are used to optimize upsampling, while the ADown module optimizes downsampling. Comparative experiments are conducted on the public SVRDD dataset. Experimental results show that the proposed improved method achieves a 72.5% mAP@50 on the SVRDD dataset, 3.8 percentage points higher than the benchmark RT-DETR-R18, significantly enhancing road defect detection performance.

    参考文献
    相似文献
    引证文献
引用本文

朴恒剑,朱明.基于改进RT-DETR的道路缺陷检测.计算机系统应用,,():1-10

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-18
  • 最后修改日期:2024-12-09
  • 在线发布日期: 2025-04-01
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号