基于多元嵌入增强网络的少样本图像分类算法
作者:

Few-shot Image Classification Algorithm Based on Multi-embedding Enhanced Network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    少样本图像分类旨在从有限的标注数据中学习分类器. 尽管现有方法已取得显著进展, 但由于训练样本有限、类内差异过大、类间差异过小, 支持样本与查询样本容易发生混淆, 导致现有方法在提取有用特征和准确区分图像类别方面仍面临挑战. 为了解决这些问题, 我们设计了一种新的多元嵌入增强网络. 该网络轻量且高效, 通过生成一组特征嵌入来表示图像, 而非仅依赖单一的图像级特征. 它能够生成多种层析结构, 从而学习更丰富的特征表示, 减小类内差异并扩大类间差异. 此外, 我们提出了一种基于集合的度量方法, 并结合动态自适应加权机制, 用于衡量查询集和支持集之间的相似度. 实验结果表明, 在miniImageNet、tieredImageNet和CUB数据集上, 模型表现优异. 在使用ResNet-12网络的1-shot设置下, 准确率分别达到了72.22%、75.43%和85.02%, 相较于基准模型分别提升了1.09%、2.93%和1.47%.

    Abstract:

    Few-shot image classification aims to learn a classifier from a limited amount of labeled data. Despite significant progress made by existing methods, challenges remain in extracting useful features and accurately classifying images due to the limited number of training samples, large intra-class variance, and small inter-class variance, which lead to confusion between support and query samples. To address these issues, this study proposes a novel multi-embedding enhanced network. This lightweight and efficient network represents images by generating a set of feature embeddings, rather than relying solely on single-image-level features. It is capable of generating various hierarchical structures to learn richer feature representations, thereby reducing intra-class variance and increasing inter-class variance. In addition, the study proposes a set-based metric combined with a dynamic self-adaptive weighting mechanism to measure the similarity between query and support sets. Experimental results demonstrate the excellent performance of the proposed model on the miniImageNet, tieredImageNet, and CUB datasets. Using a 1-shot setting in the ResNet-12 network, the model achieves accuracies of 72.22%, 75.43%, and 85.02%, respectively, outperforming the baseline models by 1.09%, 2.93%, and 1.47%.

    参考文献
    相似文献
    引证文献
引用本文

徐震.基于多元嵌入增强网络的少样本图像分类算法.计算机系统应用,,():1-10

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-28
  • 最后修改日期:2024-12-17
  • 在线发布日期: 2025-03-24
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号