MRAU-Net: 基于改进U-Net和注意力机制的视网膜血管分割
作者:
基金项目:

武汉市重点研发计划 (2022012202015070)


MRAU-Net: Retinal Blood Vessel Segmentation Based on Improved U-Net and Attention Mechanism
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    由于眼底图像背景复杂、毛细血管细小且模糊以及噪声干扰等原因, 传统视网膜血管分割算法容易出现识别不准确和断连等问题. 针对这些问题, 提出一种基于改进U-Net和注意力机制的视网膜血管分割算法(MRAU-Net). 为解决特征提取不充分问题, 设计了多尺度残差卷积模块(MSRCB)来代替U-Net传统的卷积块; 为了减少信息丢失和噪声干扰, 在瓶颈层嵌入双维注意力优化模块(DAOM); 为了减少在编解码过程中造成的信息丢失, 构建了一种新的多尺度密集空洞卷积块(MDCB), 并与传统的跳跃连接相结合. 在DRIVE和CHASE_DB1两个公开数据集上进行了实验, F1-score分别为82.92%、83.75%, AUC分别为98.87%、98.96%, 灵敏度分别为84.50%、83.82%, 准确率分别为97.11%、97.63%. 实验结果表明MRAU-Net较现有优秀算法拥有更优异的性能表现.

    Abstract:

    Due to the complex background of fundus images, thin and blurred capillaries, and noise interference, traditional retinal vessel segmentation algorithms often experience issues of inaccurate recognition and disconnections. To address these problems, a retinal blood vessel segmentation algorithm based on improved U-Net and attention mechanism (MRAU-Net) is proposed. To resolve the issue of insufficient feature extraction, a multi-scale residual convolution block (MSRCB) is designed to replace the traditional convolution blocks of U-Net. To reduce information loss and noise interference, a dual-dimensional attention optimization module (DAOM) is embedded in the bottleneck layer. To further mitigate information loss during the encoding-decoding process, a new multi-scale dense convolution block (MDCB) is constructed and combined with traditional skip connections. Experiments conducted on two public datasets of DRIVE and CHASE_DB1 yield F1-scores of 82.92% and 83.75%, AUCs of 98.87% and 98.96%, sensitivities of 84.50% and 83.82%, and accuracies of 97.11% and 97.63%, respectively. These results show that MRAU-Net outperforms existing outstanding algorithms.

    参考文献
    相似文献
    引证文献
引用本文

谢佳锋,廖光忠. MRAU-Net: 基于改进U-Net和注意力机制的视网膜血管分割.计算机系统应用,,():1-8

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-01
  • 最后修改日期:2024-11-28
  • 在线发布日期: 2025-03-24
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号