基于改进DeepLabv3+和半自动标签策略的面部皱纹检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金 (62261057, 62201495)


Facial Wrinkle Detection Based on Improved DeepLabv3+ and Semi-automatic Labeling Strategy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    皮肤衰老问题日渐引起关注, 皱纹可以有效反馈皮肤抗衰老治疗进程, 还可以反映人的生活方式、提供关于皮肤健康状况的信息. 现有皱纹检测算法受到人脸五官及图片背景的影响, 需要将面部区域切割成多个模块后才能进行检测, 且仅能在额头处水平方向皱纹的检测中展现出较好的结果, 具有较强的局限性. 针对上述问题, 本文提出一种基于改进DeepLabv3+和半自动标签策略的面部皱纹检测算法, 主要创新点包括: (1) 结合面部纹理特征和皮肤科医生对皱纹的人工标注生成深度学习所需的目标数据集标签; (2) 使用轻量级的MobileNetV2网络作为模型的主干网络, 以降低网络参数量和计算量; (3) 加入混合注意力机制, 增强特征提取能力. 最终, 使用原始图像和生成标签训练所构建的学习模型, 实现面部皱纹检测. 采用Jaccard相似性指数对本文方法的准确性进行评估. 实验结果表明, 所提出算法相较传统算法、U-Net网络、HRNetV2网络、PSPNet网络和原始DeepLabv3+网络显示出更好的性能.

    Abstract:

    Skin aging is an increasing concern, and wrinkle information provides effective feedback on the progress of anti-aging treatments for the skin. It also reflects a person’s lifestyle and offers valuable insights into skin health. Existing wrinkle detection algorithms are influenced by facial features and image backgrounds, require segmentation of the facial region into multiple blocks before detection, and perform well only in the detection of horizontally oriented wrinkles at the forehead, which presents a significant limitation. Motivated by these challenges, this study proposes a facial wrinkle detection algorithm based on an improved DeepLabv3+ model and a semi-automatic labeling strategy, characterized by the following procedures: (1) The algorithm combines facial texture features with rough annotations of wrinkles provided by dermatologists to generate the ground truth required for deep learning; (2) A lightweight, MobileNetV2 network is utilized as the backbone of the model to reduce network parameters and computational complexity. (3) A hybrid attention mechanism is incorporated to enhance feature extraction capability. The deep learning model is subsequently trained using the original images and ground truth labels. The accuracy of the proposed method is evaluated using the Jaccard similarity index (JSI). Experimental results demonstrate that the proposed algorithm outperforms traditional algorithms, the U-Net network, and the original DeepLabv3+ network in wrinkle detection

    参考文献
    相似文献
    引证文献
引用本文

钟佳璇,张俊巧,张宁涛,郭振宇,张梅,张榆锋.基于改进DeepLabv3+和半自动标签策略的面部皱纹检测.计算机系统应用,,():1-8

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-25
  • 最后修改日期:2024-11-29
  • 录用日期:
  • 在线发布日期: 2025-04-30
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号