融合位置先验的生成对抗模仿学习轨迹生成
作者:
基金项目:

国家自然科学基金(61702148, 61672648)


Generative Adversarial Imitation Learning Trajectory Generation Incorporating Location Priori
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    现有基于生成对抗模仿学习(GAIL)的轨迹生成方法多采用马尔可夫决策过程(MDP)建模人类移动规律, 在训练数据有限的情况下, 这些工作难以学习到动作选择与位置间的潜在关系, 并且计算状态转移函数时也没有考虑到位置间的距离约束, 生成的轨迹质量有待提升. 为此, 本文提出了一种基于生成对抗模仿学习的轨迹生成方法, 该方法首先将位置相关的动作分布先验知识融入到生成器中, 帮助模型理解在特定位置上动作的变化模式, 指导模型更好地建模符合真实场景的策略函数. 此外, 将距离约束引入到状态转移函数中, 确保生成轨迹的合理性. 在两个真实数据集上进行了实验, 提出的方法在Rank指标上达到了0.0268, 与最好的基线方法相比提高了39%. 此外, 在下一个位置预测任务中, 预测的准确率比最好的基线高了6%.

    Abstract:

    Existing trajectory generation methods based on generative adversarial imitation learning (GAIL) mostly use the Markov decision process (MDP) to model human movement patterns. With limited training data, it is difficult to learn the potential relationship between action selection and locations, and the distance constraints between locations are not taken into account in the calculation of the state transition function. Therefore, the quality of the generated trajectories needs to be improved. For this reason, this study proposes a trajectory generation method based on generative adversarial imitation learning. The method first incorporates priori knowledge of the location-related action distribution into the generator to help the model understand the change patterns of the actions at a specific location, guiding it to better model the policy function that conforms to the real scenario. In addition, distance constraints are introduced into the state transition function to ensure the rationality of the generated trajectories. Experiments conducted on two real datasets show that the proposed method achieves a Rank index of 0.0268, which is 39 % better than that of the best baseline method. In addition, the accuracy of the prediction in the next position prediction task is 6 % higher than that of the best baseline.

    参考文献
    相似文献
    引证文献
引用本文

王威,于娟,邱晟,姚鑫,阮方昱.融合位置先验的生成对抗模仿学习轨迹生成.计算机系统应用,,():1-10

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-19
  • 最后修改日期:2024-12-09
  • 在线发布日期: 2025-03-24
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号