基于多尺度特征融合的混合双路径CNN-MLP故障诊断模型
作者:
基金项目:

江苏省高等学校自然科学基金 (22KJB460039)


Hybrid Dual-path CNN-MLP Fault Diagnosis Model Based on Multi-scale Feature Fusion
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    滚动轴承在机械系统中至关重要, 低频率故障通常由于其发生概率低而导致数据样本稀缺, 这使得相关数据的采集和处理面临挑战, 若处理不当可导致严重的安全隐患和经济损失. 为应对这一问题, 本研究提出了一种结合传统信号处理方法与深度学习模型的卷积神经网络(CNN)与多层感知机(MLP)的双路径故障诊断模型. 特征工程提取方面, 本研究采用离散小波变换(DWT)和连续小波变换(CWT)相结合的方法, 结合平均下采样技术从原始信号中提取多尺度的时频特征和时域特征. 模型包含两条路径: 一条通过将efficient channel attention (ECA)注意力机制嵌入残差CNN中提取特征工程的时频特征, 另一条利用MLP处理下采样的多尺度时域特征, 最后融合两者进行分类. 小样本评估显示, 该特征工程方法在凯斯西储大学(CWRU)数据集上平均诊断准确率达到99.34%, 高于传统方法的98.97%. 混合CNN-MLP双路径模型在CWRU数据集上达到了99.90%的高准确率, 在江南大学(JNU)数据集上取得98.38%的准确率. 表明其在小样本滚动轴承故障诊断中的应用潜力.

    Abstract:

    Rolling bearings are crucial components in mechanical systems. As low-frequency faults are less likely to occur, data samples related to those are rare, bringing difficulties to the collection and processing of related data. If not properly addressed, such faults can lead to severe safety hazards and substantial economic losses. To deal with this problem, this study proposes a dual-path fault diagnosis model that integrates traditional signal processing methods with convolutional neural network (CNN) and multilayer perceptron (MLP). In terms of feature extraction, the study employs a combination of discrete wavelet transform (DWT) and continuous wavelet transform (CWT), along with average downsampling techniques, to extract multi-scale time-frequency and time-domain features from the raw signals. The model contains two paths: one extracts time-frequency features of feature engineering by embedding the efficient channel attention (ECA) mechanism into the residual CNN, and the other uses MLP to process down-sampled multi-scale time-domain features, and finally fuses the two paths for classification. Small sample evaluation shows that the feature engineering method achieves an average diagnostic accuracy of 99.34% on the Case Western Reserve University (CWRU) dataset, which is higher than the 98.97% achieved by the traditional method. The hybrid CNN-MLP dual-path model achieves a high accuracy of 99.90% on the CWRU dataset and an accuracy of 98.38% on the Jiangnan University (JNU) dataset. It shows its application potential in small sample rolling bearing fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

丁传龙,花国祥,蒋亮,郭永信.基于多尺度特征融合的混合双路径CNN-MLP故障诊断模型.计算机系统应用,,():1-11

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-25
  • 最后修改日期:2024-11-18
  • 在线发布日期: 2025-03-31
文章二维码
您是第11295824位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号