融合双域特征的CBCT-CT生成对抗网络
作者:
基金项目:

国家自然科学基金(42164006); 湖南省自然科学基金(2022JJ30474)


CBCT-CT Generative Adversarial Network with Dual-domain Feature Fusion
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    锥形束计算机断层扫描(cone beam computed tomography, CBCT)因其与现代直线加速器系统的集成而被广泛用于图像引导放射治疗. 然而, 由于其图像质量不如CT, 这给实现最佳治疗计划带来了重大挑战. 本研究提出一个名为DDFGAN (dual-domain feature fusion generative adversarial network)的新模型, 旨在改善CBCT图像质量, 使其接近CT水平. 该模型采用双分支架构: 第1分支通过引入RFB模块来提取空间域中的多尺度特征; 第2个分支则设计了一个专门针对CBCT到CT合成的频率域特征提取模块. 通过将这两个分支的特征融合, DDFGAN显著提升了CBCT的成像质量. 此外, 本模型引入几何一致性损失, 将传统的双向生成网络转变为单向生成网络, 这不仅更符合临床应用需求, 还大幅减少了训练时间. 实验结果显示, DDFGAN在生成少伪影的合成CT图像方面优于其他4种比较方法, 且其合成图像的HU值也更接近于CT图像, 显著提高了自适应放射治疗的准确性.

    Abstract:

    CBCT is widely used in image-guided radiation therapy due to its integration with modern linear accelerator systems. However, its inferior image quality compared to CT poses significant challenges in achieving optimal treatment planning. This study proposes a new model named DDFGAN (dual-domain feature fusion generative adversarial network), aiming at increasing the image quality of CBCT to that of CT as much as possible. The model adopts a dual-branch architecture: the first branch extracts multi-scale features in the spatial domain through the introduction of an RFB module; the second branch designs a frequency domain feature extraction module specifically for CBCT to CT synthesis. By fusing features from both branches, DDFGAN significantly enhances the imaging quality of CBCT. Additionally, the model incorporates a geometric consistency loss, transforming the traditional bidirectional generative network into a unidirectional one, which not only aligns more with clinical application requirements but also substantially reduces training time. Experimental results show that DDFGAN outperforms the other four comparative methods in generating synthetic CT images with fewer artifacts, and the HU values of synthetic images are closer to those of CT images, significantly improving the accuracy of adaptive radiation therapy.

    参考文献
    相似文献
    引证文献
引用本文

王兴凡,李曙.融合双域特征的CBCT-CT生成对抗网络.计算机系统应用,,():1-8

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-08
  • 最后修改日期:2024-11-29
  • 在线发布日期: 2025-03-24
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号