摘要:锥形束计算机断层扫描(cone beam computed tomography, CBCT)因其与现代直线加速器系统的集成而被广泛用于图像引导放射治疗. 然而, 由于其图像质量不如CT, 这给实现最佳治疗计划带来了重大挑战. 本研究提出一个名为DDFGAN (dual-domain feature fusion generative adversarial network)的新模型, 旨在改善CBCT图像质量, 使其接近CT水平. 该模型采用双分支架构: 第1分支通过引入RFB模块来提取空间域中的多尺度特征; 第2个分支则设计了一个专门针对CBCT到CT合成的频率域特征提取模块. 通过将这两个分支的特征融合, DDFGAN显著提升了CBCT的成像质量. 此外, 本模型引入几何一致性损失, 将传统的双向生成网络转变为单向生成网络, 这不仅更符合临床应用需求, 还大幅减少了训练时间. 实验结果显示, DDFGAN在生成少伪影的合成CT图像方面优于其他4种比较方法, 且其合成图像的HU值也更接近于CT图像, 显著提高了自适应放射治疗的准确性.