ResMobileNet: 面向云和云影分割的主次残差双支路网络
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金 (62203224, 12302032); 高校哲学社会科学研究项目 (44205270)


ResMobileNet: Primary-secondary Residual Dual-branch Network for Cloud and Cloud Shadow Segmentation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    云和云影分割是遥感图像处理的关键任务, 传统深度学习方法常面临漏检、误检和细节丢失等问题. 为解决这些挑战, 本文提出了一种结合ResNet34和MobileNetV3的双支路架构. 首先, MobileNetV3作为次残差支路, 进行初步特征提取, 这一步旨在减少在处理简单特征时的计算负担和参数量. 然后, 将初步特征送入主残差支路ResNet34中进行深层特征提取. 为避免最大池化操作带来的信息丢失, 设计了多尺度条带卷积池化模块(multi-scale strip convolutional pooling module, MS-SCPM), 通过多种池化和条形卷积提取特征, 保留重要细节. 为融合多尺度信息并有效检测小目标, 引入了注意力动态金字塔多尺度特征提取模块(attention-based dynamic pyramid multi-scale feature extraction module, ADPMFEM), 灵活捕捉关键特征并抑制冗余信息. 解码器部分采用了注意力特征感知重组模块(content-aware reassembly of features with attention, CWA), 通过特征图权重优化上采样过程, 改善边缘恢复效果, 提升分割精度. 最后, 在像素分类之前引入可变形卷积进一步优化分割效果. 实验结果表明, 所提模型在Biome 8、HRC-WHU和SPARCS数据集上表现优异, MIoU (mean intersection over union)分别提升至79.19%、90.41%和77.89%, 优于现有技术. 该成果可应用于遥感领域中的云和云影图像分析, 如环境监测、灾害评估和农业监控等领域, 提升数据处理精度和效率.

    Abstract:

    Cloud and cloud shadow segmentation is a key task in remote sensing image processing, where traditional deep learning methods often encounter problems such as missed detection, error detection, and loss of detail. To address these challenges, this study proposes a dual-branch architecture combining ResNet34 and MobileNetV3. First, MobileNetV3 is used as the secondary residual branch for preliminary feature extraction, aiming to reduce computational burden and parameter count when processing simple features. The preliminary features are then passed into the primary residual branch, ResNet34, for deep feature extraction. To avoid the information loss caused by max pooling operations, a multi-scale strip convolutional pooling module (MS-SCPM) is designed, which extracts features through various pooling and strip convolution methods to preserve important details. To fuse multi-scale information and effectively detect small targets, an attention-based dynamic pyramid multi-scale feature extraction module (ADPMFEM) is introduced, which flexibly captures key features while suppressing redundant information. The decoder uses a content-aware reassembly of features with attention (CWA) module, which optimizes the upsampling process through feature map weighting to improve edge recovery and enhance segmentation accuracy. Finally, deformable convolutions are introduced before pixel classification to further optimize the segmentation results. Experimental results show that the proposed model performs excellently on the Biome 8, HRC-WHU, and SPARCS datasets, with the mean intersection over union (MIoU) reaching 79.19%, 90.41%, and 77.89%, respectively, outperforming existing methods. This achievement can be applied to image analysis of clouds and cloud shadows in remote sensing domains, including environmental monitoring, disaster assessment, and agricultural surveillance, improving data processing accuracy and efficiency

    参考文献
    相似文献
    引证文献
引用本文

陆楠,朱亚楠,王键翔,闫飞一,付瑞. ResMobileNet: 面向云和云影分割的主次残差双支路网络.计算机系统应用,,():1-18

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-01
  • 最后修改日期:2024-11-29
  • 录用日期:
  • 在线发布日期: 2025-04-30
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号