融合多视图对比学习和知识图谱的推荐算法
作者:
基金项目:

国家自然科学基金(62173171)


Recommendation Algorithm Incorporating Multi-view Contrastive Learning and Knowledge Graph
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    当前多数图对比学习驱动的推荐系统模型倾向于依赖单一视图进行训练, 这种做法不可避免地限制了模型对复杂数据特征的全面捕捉能力. 为此, 提出一种融合多视图对比学习和知识图谱的推荐算法MKCLR (multi-view knowledge contrastive learning recommendation). 首先, 使用了3种视图增强方法, 分别是随机边丢弃, 添加均匀噪声扰动和随机游走算法, 为知识图谱和用户-物品图构建3个对比视图; 其次, 通过LightGCN进行编码, 并为之构建多组对比学习任务, 来最大化地提取和利用多视图数据中的丰富信息; 最后, 将主推荐任务与对比学习结合起来进行联合训练, 在MIND, Last-FM和Alibaba-iFashion这3个基准数据集上进行实验, 结果表明, MKCLR在Recall和NDCG这两个评价指标上分别平均提升5.78%和8.68%, 证明了所提方法的有效性.

    Abstract:

    Most of the current graph contrast learning-driven recommender models tend to rely on a single view for training, which inevitably limits the ability of the models to fully capture the features of complex data. To this end, a recommendation algorithm multi-view knowledge contrastive learning recommendation (MKCLR) integrating multi-view contrastive learning and knowledge graph is proposed in this study. First, three view enhancement methods, namely, random edge discarding, adding uniform noise perturbation, and random walk algorithm, are used to construct three contrasting views for the knowledge graph and user-item graph. Second, LightGCN is used to encode the knowledge graph and construct multiple contrastive learning tasks, aiming to maximize the extraction and utilization of the rich information in the multi-view data. Finally, the main recommendation task is combined with contrastive learning for joint training. Experiments conducted on MIND, Last-FM, and Alibaba-iFashion show an average increase of 5.78% and 8.68% of MKCLR in terms of Recall and NDCG indexes, respectively, validating the effectiveness of the proposed method.

    参考文献
    [1] Sun F, Liu J, Wu J, et al. BERT4Rec: Sequential recommendation with bidirectional encoder representations from Transformer. Proceedings of the 28th ACM International Conference on Information and Knowledge Management. Beijing: ACM, 2019. 1441–1450.
    [2] He XN, Liao LZ, Zhang HW, et al. Neural collaborative filtering. Proceedings of the 26th International Conference on World Wide Web. Perth: ACM, 2017. 173–182.
    [3] He XN, Du XY, Wang X, et al. Outer product-based neural collaborative filtering. Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm: AAAI Press, 2018. 2227–2233.
    [4] Chen JY, Zhang HW, He XN, et al. Attentive collaborative filtering: Multimedia recommendation with item-and component-level attention. Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. Tokyo: ACM, 2017. 335–344.
    [5] 常亮, 张伟涛, 古天龙, 等. 知识图谱的推荐系统综述. 智能系统学报, 2019, 14(2): 207–216.
    [6] Tian Y, Yang YH, Ren XD, et al. Joint knowledge pruning and recurrent graph convolution for news recommendation. Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021. 51–60.
    [7] Yang YH, Huang C, Xia LH, et al. Knowledge graph contrastive learning for recommendation. Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. Madrid: ACM, 2022. 1434–1443.
    [8] Yu JL, Yin HZ, Xia X, et al. Are graph augmentations necessary? Simple graph contrastive learning for recommendation. Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. Madrid: ACM, 2022. 1294–1303.
    [9] Lin ZH, Tian CX, Hou YP, et al. Improving graph collaborative filtering with neighborhood-enriched contrastive learning. Proceedings of the 2022 ACM Web Conference. Lyon: ACM, 2022. 2320–2329.
    [10] 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述. 计算机学报, 2018, 41(7): 1619–1647.
    [11] Zhang FZ, Yuan NJ, Lian DF, et al. Collaborative knowledge base embedding for recommender systems. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016. 353–362.
    [12] Wang HW, Zhang FZ, Xie X, et al. DKN: Deep knowledge-aware network for news recommendation. Proceedings of the 2018 World Wide Web Conference. Lyon: ACM, 2018. 1835–1844.
    [13] Lin YK, Liu ZY, Sun MS, et al. Learning entity and relation embeddings for knowledge graph completion. Proceedings of the 29th AAAI Conference on Artificial Intelligence. Austin: AAAI, 2015. 2181–2187.
    [14] Hu BB, Shi C, Zhao WX, et al. Leveraging meta-path based context for top-N recommendation with A neural co-attention model. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London: ACM, 2018. 1531–1540.
    [15] Sun Z, Yang J, Zhang J, et al. Recurrent knowledge graph embedding for effective recommendation. Proceedings of the 12th ACM Conference on Recommender Systems. Vancouver: ACM, 2018. 297–305.
    [16] Wang X, Wang DX, Xu CR, et al. Explainable reasoning over knowledge graphs for recommendation. Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Honolulu: AAAI, 2019. 5329–5336.
    [17] Scarselli F, Gori M, Tsoi AC, et al. The graph neural network model. IEEE Transactions on Neural Networks, 2009, 20(1): 61–80.
    [18] Wang HW, Zhang FZ, Wang JL, et al. RippleNet: Propagating user preferences on the knowledge graph for recommender systems. Proceedings of the 27th ACM International Conference on Information and Knowledge Management. Torino: ACM, 2018. 417–426.
    [19] 钱忠胜, 赵畅, 俞情媛, 等. 结合注意力CNN与GNN的信息融合推荐方法. 软件学报, 2023, 34(5): 2317–2336.
    [20] Wang X, He XN, Cao YX, et al. KGAT: Knowledge graph attention network for recommendation. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage: ACM, 2019. 950–958.
    [21] Wang HW, Zhao M, Xie X, et al. Knowledge graph convolutional networks for recommender systems. Proceedings of the 2019 World Wide Web Conference. San Francisco: ACM, 2019. 3307–3313.
    [22] Wang X, Huang TL, Wang DX, et al. Learning intents behind interactions with knowledge graph for recommendation. Proceedings of the 2021 Web Conference. Ljubljana: ACM, 2021. 878–887.
    [23] Fu H, Zhou SJ, Yang QH, et al. LRC-BERT: Latent-representation contrastive knowledge distillation for natural language understanding. Proceedings of the 35th AAAI Conference on Artificial Intelligence. AAAI, 2021. 12830–12838.
    [24] Deng Y, Yang JL, Chen D, et al. Disentangled and controllable face image generation via 3D imitative-contrastive learning. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 5154–5163.
    [25] Wei YW, Wang X, Li Q, et al. Contrastive learning for cold-start recommendation. Proceedings of the 29th ACM International Conference on Multimedia. Chengdu: ACM, 2021. 5382–5390.
    [26] Wu JC, Wang X, Feng FL, et al. Self-supervised graph learning for recommendation. Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021. 726–735.
    [27] Wei W, Huang C, Xia LH, et al. Contrastive meta learning with behavior multiplicity for recommendation. Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York: ACM, 2022. 1120–1128.
    [28] Xia X, Yin HZ, Yu JL, et al. Self-supervised hypergraph convolutional networks for session-based recommendation. Proceedings of the 35th AAAI Conference on Artificial Intelligence. AAAI, 2021. 4503–4511.
    [29] He XN, Deng K, Wang X, et al. LightGCN: Simplifying and powering graph convolution network for recommendation. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. Xi’an: ACM, 2020. 639–648.
    [30] Wang CY, Yu YQ, Ma WZ, et al. Towards representation alignment and uniformity in collaborative filtering. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Washington: ACM, 2022. 1816–1825.
    [31] Xia LH, Xu Y, Huang C, et al. Graph meta network for multi-behavior recommendation. Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021. 757–766.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王光,姜皓.融合多视图对比学习和知识图谱的推荐算法.计算机系统应用,,():1-11

复制
分享
文章指标
  • 点击次数:13
  • 下载次数: 34
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-10-28
  • 最后修改日期:2024-11-29
  • 在线发布日期: 2025-03-24
文章二维码
您是第11112121位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号