基于知识图谱的用户兴趣推荐
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金面上项目 (42271409)


User Interest Recommendation Based on Knowledge Graph
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在提供精准的用户兴趣推荐时, 推荐系统的数据通常存在稀疏性问题, 对于新上线的项目存在冷启动问题, 缺乏用户交互数据, 为解决上述问题, 提出基于知识图谱的用户兴趣推荐算法. 首先, 在用户潜在兴趣中, 通过多层图神经网络根据用户和项目的嵌入向量, 获取用户和项目直接、间接和更深层次的关系, 解决数据稀疏性问题. 其次, 在用户显式兴趣中, 采用图结构增强根据评分权重随机删除用户和项目之间的显式关系, 通过编码器分析新的用户和项目节点的关系, 挖掘用户与项目间的交互关系, 解决冷启动问题. 最后, 采用特征交叉压缩单元结合知识图谱嵌入与推荐任务实现特征共享, 共享的特征更加深化项目与知识图谱实体间的互动, 提高推荐的准确性. 通过在Book-Crossing和Last.FM两个数据集上进行实验, 结果证明与其他对比算法相比在AUC和ACC评价指标中有显著的提升.

    Abstract:

    Data sparsity occurs in recommendation systems and the cold-start problem exists in newly launched items due to a lack of user interaction data when providing targeted user interest recommendations. To address these problems, this study proposes a user interest recommendation algorithm based on knowledge graphs. First, to tackle the data sparsity issue in users’ potential interests, it employs a multi-layer graph neural network (GNN) to capture the direct, indirect, and deeper relationships between users and items through their embedding vectors. Second, for users’ explicit interests, it introduces a graph structure enhancement technique to randomly delete explicit relationships between users and items based on rating weights. This method leverages an encoder to analyze the relationships of new users and item nodes, uncovering interactive relationships between users and items, thereby addressing the cold-start problem. Finally, a feature cross-compression module is used to combine knowledge graph embeddings with the recommendation task to achieve feature sharing. The shared features further deepen the interaction between items and knowledge graph entities, enhancing recommendation accuracy. Experiments conducted on the Book-Crossing and Last.FM datasets demonstrate that the proposed algorithm significantly outperforms other baseline algorithms in terms of AUC and ACC indicators.

    参考文献
    相似文献
    引证文献
引用本文

沈学利,王嘉慧.基于知识图谱的用户兴趣推荐.计算机系统应用,,():1-11

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-16
  • 最后修改日期:2024-10-30
  • 录用日期:
  • 在线发布日期: 2025-03-04
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号