基于改良编码与高斯过程的交互式医学图像分割
作者:
基金项目:

国家自然科学基金(62272236, 62376128); 江苏省自然科学基金(BK20201136, BK20191401)


Interactive Medical Image Segmentation Based on Improved Encoding and Gaussian Process
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    医学图像分割是众多医学临床应用的基础与关键组成. 近年来, 交互式分割方法凭借其在复杂临床任务中的高准确性和鲁棒性受到广泛关注. 然而, 现有基于深度学习的交互式分割方法在用户交互的利用上仍有不足, 特别是在交互编码设计和像素分类等方面. 针对上述问题, 本文提出了一种包含“近中心点”和“外边缘点”的混合交互设计, 以保障交互成本并对用户意图进行精准捕捉; 同时, 通过高斯衰减函数对现有测地线距离编码方法进行加权, 以降低图像噪声干扰, 提高交互编码的鲁棒性和准确性; 此外, 结合基于混合核函数的高斯过程分类方法, 在像素分类过程中对用户交互信息进行充分利用, 提升分割精度并赋予模型一定的可解释性. 实验结果表明, 本文所提方法在MSD数据集4个标志性子集的5项分割任务中均表现出较高的分割精度, 尤其在复杂任务(如Pancreas tumour和Colon图像分割)中, Dice系数和ASSD值显著优于现有方法, 体现了其在精准分割和边界处理方面的优势.

    Abstract:

    Medical image segmentation serves as a fundamental and critical component in numerous clinical applications. Recent advancements in interactive segmentation methods have attracted significant attention due to their high accuracy and robustness in complex clinical tasks. However, current deep learning-based interactive segmentation methods exhibit limitations in leveraging user interactions, particularly in interactive encoding design and pixel classification. To address these limitations, this study proposes a hybrid interaction design incorporating “near-center points” and “outer-edge points”, which ensures low interaction costs while accurately capturing user intent. Additionally, the existing geodesic distance encoding method is enhanced by a Gaussian attenuation function to mitigate image noise interference and improve the robustness and accuracy of interaction encoding. Furthermore, a Gaussian process classification method based on a hybrid kernel function is integrated to fully exploit user interaction information during pixel classification, enhancing segmentation accuracy while endowing the model with interpretability. Extensive experiments on five segmentation tasks across four representative subsets of the medical segmentation decathlon (MSD) dataset demonstrate that the proposed method achieves consistently high segmentation accuracy. In particular, for complex tasks such as pancreas tumor and colon image segmentation, this method has significantly higher Dice coefficients and ASSD values than existing methods, showing its strengths in precise segmentation and boundary refinement.

    参考文献
    相似文献
    引证文献
引用本文

张小瑞,莫云菲,孙伟.基于改良编码与高斯过程的交互式医学图像分割.计算机系统应用,,():1-13

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-29
  • 最后修改日期:2024-11-19
  • 在线发布日期: 2025-03-31
文章二维码
您是第11295824位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号