融合自注意力机制和提示学习的个性化可解释推荐算法
作者:
基金项目:

国家自然科学基金 (52174184)


Personalized Explainable Recommendation Algorithm Integrating Self-attention Mechanism and Prompt Learning
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在个性化可解释推荐系统中, 用户ID是实现个性化的重要标识符. 现有的算法通常采用encoder-decoder架构来生成个性化可解释的推荐, 然而这种方法增加了算法的复杂性和计算成本, 限制了算法的精度表现. 为了解决这一问题, 本文提出了一个融合自注意力机制和提示学习的个性化可解释推荐算法(PERSP). 该算法通过在BERT的输入层引入提示学习并对其进行微调, 以增强算法的可解释性. 为了克服BERT无法直接使用用户ID进行个性化推荐, 该算法利用自注意力机制将用户ID与其他命令进行拼接, 将拼接后的序列输入到BERT的输入层中进行训练和推理. 为了验证该算法的有效性, 在TripAdvisor、Amazon和Yelp等数据集上进行对比实验. 在TripAdvisor数据集上, PERSP算法相比其他基线算法, RMSE和MAE分别提升了3.7%和4.7%; 在Amazon数据集上, 提升了1.05%和4.1%; 在Yelp数据集上, 提升了1%和2.5%. 结果表明该算法在个性化可解释推荐任务中具有较好的性能表现, 有效提升了推荐系统的准确性和可解释性.

    Abstract:

    In personalized explainable recommendation systems, user ID is an important identifier for personalization. Existing algorithms usually adopt the encoder-decoder architecture to generate personalized explainable recommendations, however, this approach increases the complexity and computational cost of the algorithm and limits the accuracy performance of the algorithm. To address this problem, this study proposes a personalized explainable recommendation algorithm (PERSP) that incorporates self-attention mechanism and prompt learning. The algorithm enhances the interpretability of the algorithm by introducing and fine-tuning prompt learning in the input layer of BERT. To overcome the inability of BERT to directly use user IDs for personalized recommendations, the algorithm uses a self-attentive mechanism to splice user IDs with other commands and feeds the sequences into the input layer of BERT for training and inference. To verify the effectiveness of the algorithm, comparative experiments are conducted on TripAdvisor, Amazon, and Yelp datasets. On the TripAdvisor dataset, the PERSP algorithm improves the root mean squared error (RMSE) and mean absolute error (MAE) by 3.7% and 4.7%, respectively, compared to other baseline algorithms; on the Amazon dataset, the improvements are 1.05% and 4.1% respectively; and on the Yelp dataset, the improvements are 1% and 2.5% respectively. The results show that the algorithm has better performance in personalized explainable recommendation tasks, effectively improving the accuracy and interpretability of recommendation systems.

    参考文献
    相似文献
    引证文献
引用本文

吴永庆,刘霄.融合自注意力机制和提示学习的个性化可解释推荐算法.计算机系统应用,,():1-10

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-22
  • 最后修改日期:2024-11-12
  • 在线发布日期: 2025-03-24
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号