摘要:联邦学习(federated learning, FL)是一种新兴的分布式机器学习框架, 旨在解决数据隐私保护和高效分布式计算的问题. 它允许多个客户端在不共享数据的前提下协同训练全局模型, 但由于各客户端的数据分布存在异质性, 单一的全局模型往往难以满足不同客户端的个性化需求. 针对这一问题, 本文提出了一种结合自蒸馏和解耦知识蒸馏的联邦学习算法, 该算法通过保留客户端的历史模型作为教师模型, 对客户端本地模型的训练进行蒸馏指导, 得到新的本地模型后上传到服务端进行加权平均聚合. 在知识蒸馏中, 通过对目标类知识和非目标类知识进行解耦蒸馏, 实现了对个性化知识的更充分传递. 实验结果表明, 本文提出的方法在CIFAR-10和CIFAR-100数据集上的分类准确率均超过了现有的联邦学习方法.