基于BiLSTM-Attention的议论文篇章要素识别
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

辽宁省社会科学规划基金 (L22BJY034)


Discourse Elements Identification in Argumentative Essays Based on BiLSTM-Attention
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    篇章要素识别(discourse element identification)的主要任务是识别篇章要素单元并进行分类. 针对篇章要素识别对上下文依赖性理解不足的问题, 提出一种基于BiLSTM-Attention的识别篇章要素模型, 提高议论文篇章要素识别的准确率. 该模型利用句子结构和位置编码来识别句子的成分关系, 通过双向长短期记忆网络(bidirectional long short-term memory, BiLSTM)进一步获得深层次上下文相关联的信息; 引入注意力机制(attention mechanism)优化模型特征向量, 提高文本分类的准确度; 最终用句间多头自注意力(multi-head self-attention)获取句子在内容和结构上的关系, 弥补距离较远的句子依赖问题. 相比于HBiLSTM、BERT等基线模型, 在相同参数、相同实验条件下, 在中文数据集和英文数据集上准确率分别提升1.3%、3.6%, 验证了该模型在篇章要素识别任务中的有效性.

    Abstract:

    The main task of discourse element identification is to identify discourse element units and classify them. Aiming at the lack of understanding of context dependence in discourse element identification, this study proposes a discourse element identification model based on BiLSTM-Attention to improve the accuracy of discourse element identification in argumentative essays. The model uses sentence structure and positional encoding to identify sentence component relationships and further acquires deep context-related information through bidirectional long short-term memory (BiLSTM). Attention mechanism is introduced to optimize the model feature vectors and improve the accuracy of text classification. Finally, inter-sentence multi-head self-attention is used to obtain the relationships between the content and structure of sentences, so as to make up for the distant sentence dependence. Compared with baseline models such as HBiLSTM and BERT, the accuracy on Chinese and English datasets is improved by 1.3% and 3.6% respectively under the same parameters and the same environmental conditions, which verifies the effectiveness of the model in the discourse element identification task.

    参考文献
    相似文献
    引证文献
引用本文

刘佳旭,白再冉,张艳菊.基于BiLSTM-Attention的议论文篇章要素识别.计算机系统应用,,():1-10

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-17
  • 最后修改日期:2024-11-19
  • 录用日期:
  • 在线发布日期: 2025-02-28
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号