基于U-BiFormer的遥感图像地表分类模型
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


U-BiFormer-based Model for Land Cover Classification in Remote Sensing Image
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对遥感图像进行地表分类对于城市规划、土地利用、环境监测和地表温度反演等工作而言十分重要. 针对相似地表类别存在误检的问题以及遥感图像地表类别不均衡的问题, 本文提出了一种U型Transformer模型U-BiFormer, 该模型在BiFormer的基础上使用U型解码器, 使用所有阶段解码器的输出来预测分割图, 提高了模型捕捉图像中的细节和上下文信息的能力, 使模型能更好分割相似类别. 对U型解码器特有的混合注意力模块进行改进, 增大当前阶段特征在混合特征中所占的比例, 让解码器更注重对当前阶段特征的细化, 提升模型对相似类别的分割效果. 使用CE+Focal混合损失函数替代常规交叉熵损失函数, 应对遥感图像地表类别分布不均的问题. 实验证明在GID大型遥感图像数据集上本文方法能更好地分割相似类别, 并且取得了优于当前主流模型的分割结果(Acc (81.99% )和mIoU (71.04%)).

    Abstract:

    Land cover classification of remote sensing images is crucial for urban planning, land use, environmental monitoring, and land cover temperature inversion. This study proposes a U-type Transformer network, U-BiFormer to address the issues of misclassification among similar land cover types and the imbalance of land cover classes in remote sensing images. Building upon BiFormer, this model employs a U-shaped decoder and uses the outputs of the decoders in all stages to predict the segmentation map, thereby enhancing the model’s ability to capture details and contextual information in images, allowing for better segmentation of similar classes. An improvement is made to the unique hybrid attention module of the U-shaped decoder, increasing the proportion of features from the current stage in the mixed features. This modification enables the decoder to focus more on refining the features at the current stage, enhancing the model’s segmentation performance for similar classes. Additionally, the CE+Focal hybrid loss function is employed to replace the conventional cross-entropy loss function to address the issue of class distribution imbalance in remote sensing images. Experiments demonstrate that the proposed method achieves better segmentation results for similar classes on the GID large-scale remote sensing image dataset, outperforming current mainstream models with an accuracy (Acc) of 81.99% and a mean intersection over union (mIoU) of 71.04%.

    参考文献
    相似文献
    引证文献
引用本文

安立君,刘向阳.基于U-BiFormer的遥感图像地表分类模型.计算机系统应用,,():1-7

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-16
  • 最后修改日期:2024-10-30
  • 录用日期:
  • 在线发布日期: 2025-03-24
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号