基于U-BiFormer的遥感图像地表分类模型
作者:

U-BiFormer-based Model for Land Cover Classification in Remote Sensing Image
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    对遥感图像进行地表分类对于城市规划、土地利用、环境监测和地表温度反演等工作而言十分重要. 针对相似地表类别存在误检的问题以及遥感图像地表类别不均衡的问题, 本文提出了一种U型Transformer模型U-BiFormer, 该模型在BiFormer的基础上使用U型解码器, 使用所有阶段解码器的输出来预测分割图, 提高了模型捕捉图像中的细节和上下文信息的能力, 使模型能更好分割相似类别. 对U型解码器特有的混合注意力模块进行改进, 增大当前阶段特征在混合特征中所占的比例, 让解码器更注重对当前阶段特征的细化, 提升模型对相似类别的分割效果. 使用CE+Focal混合损失函数替代常规交叉熵损失函数, 应对遥感图像地表类别分布不均的问题. 实验证明在GID大型遥感图像数据集上本文方法能更好地分割相似类别, 并且取得了优于当前主流模型的分割结果(Acc (81.99% )和mIoU (71.04%)).

    Abstract:

    Land cover classification of remote sensing images is crucial for urban planning, land use, environmental monitoring, and land cover temperature inversion. This study proposes a U-type Transformer network, U-BiFormer to address the issues of misclassification among similar land cover types and the imbalance of land cover classes in remote sensing images. Building upon BiFormer, this model employs a U-shaped decoder and uses the outputs of the decoders in all stages to predict the segmentation map, thereby enhancing the model’s ability to capture details and contextual information in images, allowing for better segmentation of similar classes. An improvement is made to the unique hybrid attention module of the U-shaped decoder, increasing the proportion of features from the current stage in the mixed features. This modification enables the decoder to focus more on refining the features at the current stage, enhancing the model’s segmentation performance for similar classes. Additionally, the CE+Focal hybrid loss function is employed to replace the conventional cross-entropy loss function to address the issue of class distribution imbalance in remote sensing images. Experiments demonstrate that the proposed method achieves better segmentation results for similar classes on the GID large-scale remote sensing image dataset, outperforming current mainstream models with an accuracy (Acc) of 81.99% and a mean intersection over union (mIoU) of 71.04%.

    参考文献
    [1] 朱凡, 罗小波. 改进的DeeplabV3Plus高分辨率遥感影像土地覆盖分类. 计算机工程与应用, 2024, 60(13): 266–275.
    [2] Pan SY, Guan HY, Chen YT, et al. Land-cover classification of multispectral LiDAR data using CNN with optimized hyper-parameters. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 241–254.
    [3] Pradhan B, Al-Najjar HAH, Sameen MI, et al. Unseen land cover classification from high-resolution orthophotos using integration of zero-shot learning and convolutional neural networks. Remote Sensing, 2020, 12(10): 1676.
    [4] Fan RY, Feng RY, Wang LZ, et al. Semi-MCNN: A semisupervised multi-CNN ensemble learning method for urban land cover classification using submeter HRRS images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4973–4987.
    [5] Bui QT, Chou TY, Hoang TV, et al. Gradient boosting machine and object-based CNN for land cover classification. Remote Sensing, 2021, 13(14): 2709.
    [6] Horry MJ, Chakraborty S, Pradhan B, et al. 2-speed network ensemble for efficient classification of incremental land-use/land-cover satellite image chips. arXiv:2203.08267, 2022.
    [7] Yao J, Zhang B, Li CY, et al. Extended vision Transformer (ExViT) for land use and land cover classification: A multimodal deep learning framework. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5514415.
    [8] Weng LG, Pang K, Xia M, et al. SGFormer: A local and global features coupling network for semantic segmentation of land cover. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 6812–6824.
    [9] Lu TY, Wan LH, Qi SQ, et al. Land cover classification of UAV remote sensing based on Transformer-CNN hybrid architecture. Sensors, 2023, 23(11): 5288.
    [10] Zhu L, Wang XJ, Ke ZH, et al. BiFormer: Vision Transformer with bi-level routing attention. Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023. 10323–10333.
    [11] Yeom SK, von Klitzing J. U-MixFormer: UNet-like Transformer with mix-attention for efficient semantic segmentation. arXiv:2312.06272, 2023.
    [12] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. Proceedings of the 18th International Conference on Medical image Computing and Computer-assisted Intervention. Munich: Springer, 2015. 234–241.
    [13] Lin TY, Goyal P, Girshick R, et al. Focal loss for dense object detection. Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017. 2999–3007.
    [14] Wang W, Tang C, Wang X, et al. A ViT-based multiscale feature fusion approach for remote sensing image segmentation. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4510305.
    [15] Wu XS, Wang LL, Wu CY, et al. Semantic segmentation of remote sensing images using multiway fusion network. Signal Processing, 2024, 215: 109272.
    [16] Wang Y, Sun ZC, Zhao W. Encoder-and decoder-based networks using multiscale feature fusion and nonlocal block for remote sensing image semantic segmentation. IEEE Geoscience and Remote Sensing Letters, 2021, 18(7): 1159–1163.
    [17] 贾克斌, 何岩, 魏之皓. 融合多尺度特征的高分辨率森林遥感图像分割. 北京工业大学学报, 2024, 50(9): 1089–1099.
    [18] Xie EZ, Wang WH, Yu ZD, et al. SegFormer: Simple and efficient design for semantic segmentation with Transformers. Advances in Neural Information Processing Systems, 2021, 34. 12077–12090.
    [19] Guo MH, Lu CZ, Hou QB, et al. SegNeXt: Rethinking convolutional attention design for semantic segmentation. Advances in Neural Information Processing Systems, 2022, 35. 1140–1156.
    [20] Liu Z, Lin YT, Cao Y, et al. Swin Transformer: Hierarchical vision Transformer using shifted windows. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021. 10012–10022.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

安立君,刘向阳.基于U-BiFormer的遥感图像地表分类模型.计算机系统应用,,():1-7

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-16
  • 最后修改日期:2024-10-30
  • 在线发布日期: 2025-03-24
文章二维码
您是第11112121位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号