基于深度学习的伪造人脸检测技术综述
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62471124); 黑龙江省自然科学基金(LH2022F006); 黑龙江省教育科学规划重点项目(GJB1421114)


Review of Forged Face Detection Techniques Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来, 随着伪造人脸技术的快速发展, 通过伪造人脸技术合成的人脸已经非常逼真, 人眼很难鉴别, 部分不法分子对伪造人脸技术的非法应用已经对社会稳定、个人隐私造成了恶劣影响, 因此伪造人脸检测技术的重要性日益凸显. 本文系统地探讨了伪造人脸检测技术的现状, 主要从伪造人脸图像和伪造人脸视频的检测两个方面进行分析. 在伪造人脸图像检测方面, 重点讨论了基于图像空间域和频率域的方法、身份一致性检测以及人脸区域定位技术的应用. 在伪造人脸视频检测方面, 研究聚焦于时空特征融合、生理特征利用及视听信息的结合. 此外, 本文介绍了常用的评估指标, 系统分析了多种重要数据集, 包括其特点和适用场景. 同时还指出当前文献中的局限性, 例如对抗样本的鲁棒性不足、检测方法对新型伪造技术的适应性差等问题. 基于这些分析, 我们提出了未来可能的研究方向, 包括跨域检测技术的优化、新算法的探索及模型的可解释性研究. 本文不仅为研究者提供了对伪造人脸检测技术的全面了解, 也为后续研究指明了发展方向, 具有重要的理论价值和实际应用意义.

    Abstract:

    In recent years, as the forged face technology rapidly develops, the face synthesized has been extremely hard for the human eyes to identify, and the application of this technology by some criminals has badly threatened social stability and personal privacy, so the importance of forged face detection technology has become increasingly prominent. This review systematically discusses the current status of forged face detection technology, mainly from two aspects of forged face image detection and forged face video detection. In the aspect of forged face image detection, the methods based on the image spatial domain and frequency domain, identity consistency detection, and the application of face region localization technology are discussed. In the field of forged face video detection, the research focuses on the integration of spatio-temporal features, the utilization of physiological features, and the combination of audiovisual information. In addition, the study introduces the commonly used evaluation indicators and systematically analyzes a variety of important data sets, including their characteristics and application scenarios. At the same time, it also points out the limitations in the current literature, such as the lack of robustness of adversarial samples and the poor adaptability of detection methods to new forgery techniques. Based on these analyses, this study puts forward the possible research directions in the future, including the optimization of cross-domain detection technology, the exploration of new algorithms, and the study of the model interpretability. This review not only provides researchers with a comprehensive understanding of fake face detection technology but also points out the development direction for subsequent research, possessing high theoretical value and practical application significance.

    参考文献
    相似文献
    引证文献
引用本文

赵娅,郜明超,姚文达,徐锋.基于深度学习的伪造人脸检测技术综述.计算机系统应用,,():1-17

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-11
  • 最后修改日期:2024-11-12
  • 录用日期:
  • 在线发布日期: 2025-02-26
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号