基于半监督多维度对比学习的噪声标签图像分类
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广东特支计划


Noise Label Image Classification Based on Semi-supervised Multi-dimensional Contrastive Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于深度学习的人工智能诊断模型严重依赖于高质量的详尽注释数据进行算法训练, 但受到噪声标签信息的影响. 为了增强模型的鲁棒性并防止有噪声的标签记忆, 本文提出了一种基于多维度对比学习的噪声标签图像分类方法, 该方法可以有效地融合多维度对比学习和半监督学习来对抗标签噪声. 具体来说, 提出的方法由3个精心设计的组件组成: 以混合增强图像为输入, 设计了具有动量更新机制的混合特征嵌入模块来挖掘抽象的分布式特征表示. 同时, 通过使用多维度对比学习模块, 结合实例对比学习和类间对比学习, 从不同维度对特征空间中的特征进行调整. 此外, 还利用噪声鲁棒损失函数来确保具有正确标签的样本在学习过程中占主导地位. 在CIFAR-10和CIFAR-100数据集上进行的实验表明, 我们的方法取得了比现有方法更好的结果.

    Abstract:

    Deep learning-based artificial intelligence diagnostic models rely heavily on high-quality and exhaustively annotated data for algorithm training, but they are affected by noise label information. To enhance the robustness of the model and prevent memorization of noise labels, this study proposes a noise label image classification method based on multi-dimensional contrastive learning. This method can effectively integrate multi-dimensional contrastive learning and semi-supervised learning to combat label noise. Specifically, the proposed method consists of three carefully designed components. A mixed feature embedding module with a momentum update mechanism is designed to extract abstract distributed feature representations using mixed augmented images as input. Simultaneously, the study adjusts the features in the feature space from different dimensions by employing a multi-dimensional contrastive learning module, which combines instance contrastive learning and inter-class contrastive learning. Additionally, a noise-robust loss function is utilized to ensure that samples with correct labels dominate the learning process. Experiments conducted on CIFAR-10 and CIFAR-100 datasets demonstrate that the proposed method achieves better results than existing methods.

    参考文献
    相似文献
    引证文献
引用本文

朱定局,叶展昊,何珂仪.基于半监督多维度对比学习的噪声标签图像分类.计算机系统应用,,():1-8

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-17
  • 最后修改日期:2024-10-30
  • 录用日期:
  • 在线发布日期: 2025-02-26
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号