基于不确定性校准的烟雾语义分割
作者:
基金项目:

2022年度沈阳市科学技术计划“揭榜挂帅”产业共性技术项目(22-316-1-07); 辽宁省应用基础研究项目(2022JH2/101300243)


Smoke Senmantic Segmentation Based on Uncertainty Calibration
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    烟雾检测在早期火灾预警当中非常重要. 现有检测算法基本是基于确定性的卷积神经网络来进行的, 然而确定性的神经网络往往会给出非常自信的预测结果, 即使它完全不知道某些区域当中是否有目标对象, 尤其是烟雾边缘区域有着更加透明的效果, 致使该区域和周围环境极易混淆, 因此检测算法对该区域并不能进行很好的判断, 进而造成大量的假阳性. 因此, 本文提出一种改进的DeepLabV3+算法, 首先, 该算法基于贝叶斯思想优化DeepLabV3+从而输出非确定性的特征编码, 以量化预测图像中不确定性的大小, 校准模型的学习过程. 其次基于预处理思想对特征编码进行预处理, 降低无关干扰特征信息量, 并且强化DeepLabV3+网络中特征融合能力, 充分利用网络提取到的多尺度特征信息. 最后将DeepLabV3+网络中上采样算子优化为CARAFE算子, 降低上采样过程中重要信息的丢失. 模型在公开的SMOKE5K数据集上取得良好的性能, MIoU指标达到了92.41%.

    Abstract:

    Smoke detection is very important in early fire warning. The existing detection algorithms are basically based on deterministic convolutional neural networks. However, deterministic neural networks tend to give very confident prediction results, even though they do not know whether there is a target object in some regions at all. In particular, the smoke edge region is more transparent, making it extremely easy for these areas to be confused with the surrounding environment. Therefore, the detection algorithm cannot make a good judgment on this region, producing a large number of false positives. So, an improved DeepLabV3+ algorithm is proposed. First, the algorithm optimizes DeepLabV3+ based on Bayesian ideas to output non-deterministic feature coding, so as to quantify the measurement of uncertainty in the predicted image and calibrate the learning process of the model. Secondly, feature coding is preprocessed based on the preprocessing idea to reduce the amount of information of irrelevant interfering features, and the feature fusion capability in the DeepLabV3+ network is strengthened to make full use of the multi-scale feature information extracted from the network. Finally, the upsampling operator in the DeepLabV3+ network is optimized as the CARAFE operator to reduce the loss of important information in the upsampling process. The model achieves good performance on the open SMOKE5K dataset, with the MIoU index reaching 92.41%.

    参考文献
    相似文献
    引证文献
引用本文

刘志宏,杨海波,贾军营,卢鑫.基于不确定性校准的烟雾语义分割.计算机系统应用,,():1-10

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-21
  • 最后修改日期:2024-11-12
  • 在线发布日期: 2025-03-24
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号