辅助装配小型精密器件的全向AGV系统
作者:
基金项目:

陕西省科技厅项目(S2023-YF-YBNY-0232)


Omnidirectional AGV System for Auxiliary Assembly of Small Precision Devices
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • | | | |
  • 文章评论
    摘要:

    生产中多类型、小批量的小型精密器件(直径16–40mm)主要由固定工位机器人完成主要装配工作任务, 这种装配模式成本较大, 针对这种小型器件, 市面上的AGV存在灵活性差、定位精度低的问题, 因此本文设计并开发了一种搭载工业相机与双机械臂的全向AGV自主导航完成多生产线间的动态组合工作, 实现多种类型器件有序的辅助装配. 为了提高定位精度, 通过贝叶斯法则融合2D激光雷达和RGB-D建立融合栅格地图, 提高障碍物检测率. 采用EKF融合轮式里程计与IMU的数据, 提高里程计精度, 减少运动误差. 为了提高工作效率, 在实时性做出创新, 通过RGB-D得到待抓精密器件与相机光心的距离, 融合车速与雷达、相机等部件的位姿关系等信息解算出车载双机械臂在距离待抓精密器件S距离时的最佳运动时机. 最后为了准确识别多类型、小批量的小型精密器件, 基于改进的Yolo-Fastest算法识别器件, 提高识别精度的同时降低AGV的运算成本. 通过测试, 系统对小型精密器件(如RF连接器)识别准确率不低于95%, 在70×50×100 cm3空间内能实现全向移动, 运动误差最大为10 cm, 较现有的生产模式, 此AGV柔性化程度提高, 生产成本降低, 工作效率提高了近1倍, 具有实际推广价值.

    Abstract:

    In the production of multiple types and small batches of small precision devices (diameter 16–40 mm), the main assembly tasks are mainly completed by fixed station robots, with this assembly mode having a large cost. For such small devices, the automatic guided vehicle (AGV) on the market have the problems of poor flexibility and low positioning accuracy. To address these problems, this study designs and develops an omnidirectional AGV autonomous navigation equipped with industrial cameras and dual manipulators to complete the dynamic combination of multiple production lines and realize the orderly auxiliary assembly of various types of devices. To improve the positioning accuracy, the Bayesian rule fuses 2D LiDAR and RGB-D to establish a fused raster map to improve the obstacle detection rate. EKF is used to fuse the data of the wheeled odometer and the IMU to improve the accuracy of the odometer and reduce the motion error. For the sake of improving work efficiency and making innovations in real-time performance, the distance between the precision device to be grasped and the camera optical center is obtained through RGB-D, and the information such as vehicle speed and the pose relationship between radar and camera are fused to calculate the optimal movement time of the vehicle-mounted dual manipulators at the distance S from the precision device to be grasped. Finally, to accurately identify multi-type and small-batch small precision devices, the improved Yolo-Fastest algorithm is used, which improves the recognition accuracy and reduces the computing cost of the AGV. Test results show that the system for small precision devices (e.g., RF connectors) has identification accuracy greater than 95%. In 70×50×100 cm3 space, it can achieve omnidirectional movement, and the maximum motion error is 10 cm. Compared with the existing production mode, the AGV has improved flexibility, reduced production cost, and nearly doubled work efficiency, worthy of practical promotion.

    参考文献
    [1] 钱晓明, 黄宇轩, 楼佩煌, 等. 基于多传感器融合的跟随AGV复合导引技术. 农业机械学报, 2022, 53(1): 14–22, 32.
    [2] 颜普, 曹昊宇, 雷为好. 基于改进图优化的激光SLAM算法. 安徽大学学报(自然科学版), 2023, 47(4): 35–41.
    [3] 蔡来良, 杨望山, 王姗姗, 等. SLAM在室内测绘仪器研发中的应用综述. 矿山测量, 2017, 45(4): 85–91.
    [4] 陈明方, 黄良恩, 王森, 等. 移动机器人视觉里程计技术研究综述. 农业机械学报, 2024, 55(3): 1–20.
    [5] 黄宴委, 董文康, 王俊, 等. 融合光度和深度的视觉里程计改进算法. 福州大学学报(自然科学版), 2019, 47(6): 746–752.
    [6] 张耀, 吴一全, 陈慧娴. 基于深度学习的视觉同时定位与建图研究进展. 仪器仪表学报, 2023, 44(7): 214–241.
    [7] 赵宇轩, 贾克斌, 陈嘉平. 一种融合IMU的手持旋轴激光雷达定位建图方法. 测控技术, 2023, 42(10): 38–43, 81.
    [8] 张礼睿, 孙勇智, 刘力铭, 等. 无里程计移动机器人多传感器融合定位算法. 组合机床与自动化加工技术, 2023(2): 109–112.
    [9] 崔炜, 朱发证. 机器人导航的路径规划算法研究综述. 计算机工程与应用, 2023, 59(19): 10–20.
    [10] 高小栋, 楼佩煌, 钱晓明, 等. 基于网络差分组合导航的AGV开发. 机械设计与制造工程, 2023, 52(12): 37–42.
    [11] 刘慧, 段云鹏, 沈跃. 果园移动机器人激光雷达双源信息融合实时导航方法. 农业机械学报, 2023, 54(8): 249–258.
    [12] 叶强强, 郑明魁, 邱鑫. 基于ROS的室内自主导航移动机器人系统实现. 传感器与微系统, 2022, 41(2): 90–93.
    [13] 张彦, 陈学京, 肖献强, 等. 移动机器人激光SLAM导航定位方法研究. 机械设计与制造, 2023(11): 235–240.
    [14] 李明明, 张龙. 一种基于ROS的多传感器融合地图构建方法. 西安科技大学学报, 2023, 43(3): 613–621.
    [15] 李全峰, 吴海波, 陈江, 等. 基于激光雷达与RGB-D相机融合Gmapping建图研究. 激光与光电子学进展, 2023, 60(12): 1228003.
    [16] 姬鹏, 高帅轩. 基于ROS机器人的激光与视觉融合建图方法. 组合机床与自动化加工技术, 2022(12): 132–135.
    [17] 张晓引, 岳丽华. 改进的Naive-Bayes方法. 中国科学技术大学学报, 1999, 29(1): 101–107.
    [18] Ababneh AH. Investigating the relevance of arabic text classification datasets based on supervised learning. Journal of Electronic Science and Technology, 2022, 20(2): 100160.
    [19] Cahyadi MN, Asfihani T, Suhandri HF, et al. Unscented Kalman filter for a low-cost GNSS/IMU-based mobile mapping application under demanding conditions. Geodesy and Geodynamics, 2024, 15(2): 166–176.
    [20] Wang XW, Lu JJ, Ke FY, et al. Research on AGV task path planning based on improved A* algorithm. Virtual Reality & Intelligent Hardware, 2023, 5(3): 249–265.
    [21] Wang JJ, Wang Q, Gao GC, et al. Improving YOLO5 for real-time detection of small targets in side scan sonar images. Journal of Ocean University of China, 2023, 22(6): 1551–1562.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李颀,安泽顺.辅助装配小型精密器件的全向AGV系统.计算机系统应用,2025,34(4):146-154

复制
分享
文章指标
  • 点击次数:55
  • 下载次数: 96
  • HTML阅读次数: 16
  • 引用次数: 0
历史
  • 收稿日期:2024-10-07
  • 最后修改日期:2024-10-23
  • 在线发布日期: 2025-02-28
文章二维码
您是第11415923位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号