应用周期选择和变量交叉注意的光伏电力长时间序列预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Photovoltaic Power Long-sequence Time Series Forecasting via Period Selection and Variable Cross-attention
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确的综合能源负荷预测是区域综合能源系统前期规划和后期按需协调运行的关键前提. 近期基于Transformer的方法由于其优秀的全局建模能力, 在长序列预测方面显示了显著潜力. 然而, Transformer中的排列不变自注意力机制导致了时间信息丢失, 且忽视了多能源负荷预测中不同变量之间的关键依赖关系. 为解决上述挑战, 本文提出了一种补丁与变量混合模型 (patch and variable mixing model, PVMM)以实现准确多能源负荷预测. PVMM 采用补丁嵌入技术, 将输入的多能源负荷序列转换为3D向量, 从而保留补丁的时间和变量信息. 其次, 本文提出了基于深度可分离卷积的补丁混合模块 (patch mixing module, PMM)建立时间依赖关系模型. 另外, 本文还提出了变量动态投影注意力模块 (variable dynamic projection attention module, VDP-AM)将查询 (query)和数值 (value)变量映射到更高维空间, 并通过自注意力机制处理多变量之间的相互作用. 最后, 本方法在亚利桑那州立大学公开的在线系统数据集的预测精度和泛化能力均超越现有方法.

    Abstract:

    Accurate integrated energy load forecasting is a key prerequisite for the preliminary planning and subsequent on-demand coordinated operation of regional integrated energy systems. The recent Transformer-based method has shown significant potential in long sequence forecasting for its excellent global modeling capabilities. However, the permutationally invariant self-attention mechanism in Transformer leads to the loss of temporal information and ignores the key dependencies between different variables in multi-energy load forecasting. To address the above challenges, this study proposes a patch and variable mixing model (PVMM) to achieve accurate multi-energy load forecasting. PVMM uses patch embedding technology to convert the input multi-energy load sequence into a 3D vector, thereby retaining the temporal and variable information of the patch. Secondly, this study proposes a patch mixing module (PMM) based on deep separable convolution to establish a temporal dependency model. In addition, this study also proposes a variable dynamic projection attention module (VDP-AM) to map Query and Value variables to a higher dimension and handle the interaction between multiple variables through a self-attention mechanism. Finally, the prediction accuracy and generalization ability of this method on the online system dataset publicly available at Arizona State University surpass existing methods.

    参考文献
    相似文献
    引证文献
引用本文

周恒,艾青,张婧汇.应用周期选择和变量交叉注意的光伏电力长时间序列预测.计算机系统应用,,():1-10

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-10
  • 最后修改日期:2024-11-12
  • 录用日期:
  • 在线发布日期: 2025-03-04
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号