基于DeepLIFT算法的可解释多模态假新闻检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61902193)


Explainable Multimodal Fake News Detection Based on DeepLIFT Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前, 大多数多模态可解释假新闻检测方法忽视了对解释数据和跨模态特征的进一步研究利用, 导致可解释假新闻检测方法, 虽然对模型的决策做出了解释, 但是模型检测性能并没有优于先进的多模态检测方法. 针对这些问题, 提出了一种迭代的可解释多模态假新闻检测框架. 该方法由主模型和解释模块构成, 二者都接收多模态新闻作为输入. 首先, 解释模块中将DeepLIFT解释算法计算出的解释数据也作为主模型的输入之一, 参与到主模型的决策过程. 接着, 主模型中通过多任务网络框架计算出跨模态相关特征和跨模态补充特征, 并通过跨模态相关特征的粗预测分数对跨模态补充特征重新加权进行细化, 多种特征拼接起来进行模型决策. 最后, 解释模块利用知识蒸馏从主模型转移决策知识进行训练. 主模型和解释模块交替训练, 整体构成了迭代的框架, 在提供决策解释的同时, 进一步提升模型检测性能. 在两个公开的假新闻检测数据集上进行大量实验, 实验结果证明所提出的方法优于最先进的多模态假新闻检测方法.

    Abstract:

    Currently, most explainable multimodal fake news detection methods overlook the further research and utilization of explanation data and cross-modal features. As a result, while these explainable fake news detection methods provide explanations for model decisions, their detection performance does not surpass that of advanced multimodal detection methods. To address these issues, this study proposes an iterative explainable multimodal fake news detection framework. This method consists of a main model and an explanation module, both of which receive multimodal news as input. First, the explanation module uses the explanation data calculated by the DeepLIFT algorithm as one of the inputs to the main model, contributing to the decision-making process. Next, the main model calculates cross-modal relevant features and cross-modal supplementary features through a multi-task network framework. It refines the cross-modal supplementary features by re-weighting them with the coarse prediction scores from the cross-modal relevant features and combines multiple features to make the final model decision. Finally, the explanation module trains by transferring decision knowledge from the main model by using knowledge distillation. The main model and the explanation module are trained alternately, forming an iterative framework that enhances model detection performance while providing decision explanations. Extensive experiments on two publicly available fake news detection datasets demonstrate that the proposed method outperforms state-of-the-art multimodal fake news detection methods.

    参考文献
    相似文献
    引证文献
引用本文

王炎,应龙.基于DeepLIFT算法的可解释多模态假新闻检测.计算机系统应用,,():1-10

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-16
  • 最后修改日期:2024-10-30
  • 录用日期:
  • 在线发布日期: 2025-01-21
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号