面向车联网DoS攻击的混合入侵检测系统
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Hybrid Intrusion Detection System for DoS Attacks in Internet of Vehicles
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对车联网中拒绝服务 (denial of service, DoS)攻击难以防范且现有监督学习方法无法有效检测零日攻击的问题, 提出了一种混合DoS攻击入侵检测系统. 首先, 对数据集进行预处理, 提高数据的质量; 其次, 利用特征选择滤除冗余特征, 旨在获得代表性更强的特征; 再次, 采用集成学习方法将5种基于树结构的监督分类器堆叠集成用于检测已知DoS攻击; 最后, 提出了一种无监督异常检测方法, 将卷积去噪自动编码器与注意力机制相结合来建立正常行为模型, 用于检测堆叠集成模型漏报的未知DoS攻击. 实验结果表明, 对于已知DoS攻击检测, 所提系统在Car-Hacking数据集和CICIDS2017数据集上的检测准确率分别为100%和99.967%; 对于未知DoS攻击检测, 所提系统在上述两个数据集上的检测准确率分别为100%和83.953%, 并且在两个数据集上的平均测试时间分别为0.072 ms和0.157 ms, 验证了所提系统的有效性和可行性.

    Abstract:

    To solve the problems that denial of service (DoS) attacks in the Internet of Vehicles are difficult to prevent and the existing supervised learning methods cannot effectively detect zero-day attacks, this study proposes a hybrid DoS attack intrusion detection system. Firstly, the dataset is preprocessed to improve data quality. Secondly, feature selection is used to filter out redundant features, which aims to obtain more representative features. Thirdly, the ensemble learning method is used to integrate five tree-based supervised classifiers through stacking to detect known DoS attacks. Finally, an unsupervised anomaly detection method is proposed, which combines the convolutional denoising autoencoder with the attention mechanism to establish a normal behavior model. It is used to detect unknown DoS attacks that are missed by stacking ensemble models. Experimental results show that for the detection of known DoS attacks, the detection accuracy of the proposed system on the Car-Hacking dataset and the CICIDS2017 dataset is 100% and 99.967%, respectively. For the detection of unknown DoS attacks, the detection accuracy of the proposed system on the above two datasets is 100% and 83.953%, respectively, and the average test time on the two datasets is 0.072 ms and 0.157 ms, respectively, which verifies the effectiveness and feasibility of the proposed system.

    参考文献
    相似文献
    引证文献
引用本文

郭健忠,王灿,谢斌,闵锐.面向车联网DoS攻击的混合入侵检测系统.计算机系统应用,,33():1-9

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-06
  • 最后修改日期:2024-10-10
  • 录用日期:
  • 在线发布日期: 2025-01-17
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号