摘要:不同时间获取的同一区域的双时相遥感图像在风格上往往具有很大差异, 大多数研究方法忽略了这个问题, 导致在风格多样的数据集上应用时, 模型的性能指标和可视化效果不尽如人意. 为此, 本文首先使用风格迁移模块针对某一时刻原始图像生成类似另一时刻风格的风格迁移图像. 其次, 提出了一种基于双向风格迁移的孪生对称差分特征金字塔网络 (symmetrical difference feature pyramid network, SDFPNet), 确定不同风格迁移方向对变化检测精度提升的影响程度. 具体来说, 将原始图像和风格迁移图像作为SDFPNet输入, 使用两个孪生的轻量化网络和差分特征金字塔网络 (difference feature pyramid network, DFPNet)同时进行参数优化, 得到两个并行分支预测的变化图. 为了减少变化像素点的误判, 融合两个预测结果提升变化检测的准确性. 在LEVIR-CD、CDD和SYSU-CD这3个数据集上通过实验证明, 本文提出的基于双向风格迁移的SDFPNet在遥感变化检测任务上的评价指标优于SOTA (state-of-the-art)方法. 尤其是在由于季节变化, 风格差异较大的CDD和SYSU-CD数据集, 在CDD数据集上检测精度达到99.37%, F2分数达到94.19%, SYSU-CD数据集上检测精度达到92.31%. 有效解决了双时相图像风格差异大导致的变化检测精度不佳问题.