基于风格迁移的双向孪生网络遥感变化检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

重点实验室项目 (2022-JCJQ-LA-001-080); 国家重点研发计划 (2018YFC0823002); 中央高校基本科研专项基金 (FRF-TP-20-10B); 2022年度河南省重大科技专项 (221100210600); “十四五”重点研发计划项目 (2021YFB3901105)


Bi-directional Siamese Network for Remote Sensing Change Detection Based on Style Transfer
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    不同时间获取的同一区域的双时相遥感图像在风格上往往具有很大差异, 大多数研究方法忽略了这个问题, 导致在风格多样的数据集上应用时, 模型的性能指标和可视化效果不尽如人意. 为此, 本文首先使用风格迁移模块针对某一时刻原始图像生成类似另一时刻风格的风格迁移图像. 其次, 提出了一种基于双向风格迁移的孪生对称差分特征金字塔网络 (symmetrical difference feature pyramid network, SDFPNet), 确定不同风格迁移方向对变化检测精度提升的影响程度. 具体来说, 将原始图像和风格迁移图像作为SDFPNet输入, 使用两个孪生的轻量化网络和差分特征金字塔网络 (difference feature pyramid network, DFPNet)同时进行参数优化, 得到两个并行分支预测的变化图. 为了减少变化像素点的误判, 融合两个预测结果提升变化检测的准确性. 在LEVIR-CD、CDD和SYSU-CD这3个数据集上通过实验证明, 本文提出的基于双向风格迁移的SDFPNet在遥感变化检测任务上的评价指标优于SOTA (state-of-the-art)方法. 尤其是在由于季节变化, 风格差异较大的CDD和SYSU-CD数据集, 在CDD数据集上检测精度达到99.37%, F2分数达到94.19%, SYSU-CD数据集上检测精度达到92.31%. 有效解决了双时相图像风格差异大导致的变化检测精度不佳问题.

    Abstract:

    A majority of research methods neglect significant variations exhibited in the style of bi-temporal remote sensing images acquired at different times for the same area, leading to unsatisfactory model performance indexes and visualization when the model is applied to stylistically diverse datasets. To address this issue, a style transfer module is used in this article to generate an image with a style similar to that of another moment for the original image at a certain moment. Subsequently, a symmetrical difference feature pyramid network (SDFPNet) based on bi-directional style transfer is proposed to determine the influence degree of different style transfer directions on the improvement of change detection accuracy. Specifically, two lightweight Siamese networks and difference feature pyramid network (DFPNet) are used to conduct parameter optimization on the inputted original and stylized as SDFPNet, producing the change maps predicted by two parallel branches. To reduce the misclassification of changed pixels, the two prediction results are merged to improve the accuracy of change detection. Experiments on three datasets, LEVIR-CD, CDD, and SYSU-CD, demonstrate that the proposed SDFPNet based on bi-directional style transfer outperforms state-of-the-art (SOTA) methods in remote sensing change detection task, with results of CDD and SYSU-CD datasets more convincing, which have large style differences due to seasonal changes. The detection accuracy reaches 99.37% and F2 score reaches 94.19% on the CDD dataset, and the detection accuracy reaches 92.31% on the SYSU-CD dataset. The proposed method in this article effectively solves the problem of poor change detection accuracy caused by large style differences in bi-temporal images.

    参考文献
    相似文献
    引证文献
引用本文

史经业,罗雅露,张梦鸽,支瑞聪,刘吉强.基于风格迁移的双向孪生网络遥感变化检测.计算机系统应用,,():1-14

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-10
  • 最后修改日期:2024-10-30
  • 录用日期:
  • 在线发布日期: 2025-02-25
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号