基于深度哈希的多模态临床数据相似病例检索
作者:
基金项目:

杭州市生物医药和健康产业发展扶持科技专项 (2022WJC197)


Similarity Patient Retrieval of Multimodal Clinical Data Based on Deep Hashing
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    随着电子健康档案(EHR)的普及, 相似患者检索已成为支持辅助诊断和制定治疗计划等临床决策的重要任务. 然而, EHR 数据具有高维度、异构性且数量大的特点. 为了有效整合多模态临床数据并实现高效检索, 本文提出了一种基于深度哈希的多模态临床数据相似病例检索模型——MCDF. 该模型根据不同模态数据的特性, 将结构化文本数据、非结构化文本数据、和图像数据分别使用多层感知机(multi-layer perceptron, MLP)模型、BioBERT、BioMedCLIP进行特征提取, 并通过自注意力机制模块进行特征融合. 利用三元组损失函数引导模型直接生成能够有效代表样本的哈希码, 通过哈希码快速比对实现样本检索, 不仅能提高检索的准确性, 还能显著提升检索效率. 本文基于公开数据集MIMIC-III, 采用归一化折扣累计收益均值(MNDCG)和均值平均精度(MAP)作为评价指标, 将MCDF模型与传统哈希方法(如spectral hashing)和先进哈希方法(如deep hashing network)进行比较. 实验结果显示, MCDF模型的表现优于所有基线模型, 验证了本文提出模型的优越性.

    Abstract:

    With the widespread adoption of electronic health record (EHR), retrieving similar cases has become a critical task in supporting clinical decision-making, such as in auxiliary diagnosis and treatment planning. However, EHR data is characterized by high dimensionality, heterogeneity, and large volume. To effectively integrate multimodal clinical data and achieve efficient retrieval, this study proposes a multimodal clinical data retrieval model for similar cases based on deep hashing—MCDF. This model employs different methods for feature extraction tailored to the characteristics of various modalities, utilizing multi-layer perceptron (MLP) for structured text data, BioBERT for unstructured text data, and BioMedCLIP for image data, followed by feature fusion through a self-attention mechanism. A triplet loss function guides the model to directly generate hash codes that effectively represent the samples, enabling rapid comparisons for sample retrieval. This not only enhances retrieval accuracy but also significantly improves efficiency. Using the publicly available MIMIC-III dataset, the MCDF model is evaluated against traditional hashing methods (such as spectral hashing) and advanced hashing methods (such as deep hashing network) using mean normalized discounted cumulative gain (MNDCG) and mean average precision (MAP) metrics for evaluation. Experimental results demonstrate that the MCDF model outperforms all baseline models, validating the superiority of the proposed approach.

    参考文献
    相似文献
    引证文献
引用本文

谢明朗,袁贞明,施军平,田昕.基于深度哈希的多模态临床数据相似病例检索.计算机系统应用,,():1-12

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-27
  • 最后修改日期:2024-10-23
  • 在线发布日期: 2025-03-31
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号