基于区块链的跨平台网络视频版权保护方案
作者:
基金项目:

重庆市教育科学规划重点课题(K22YE205098); 重庆师范大学博士启动基金(21XLB030, 21XLB029)


Blockchain-based Cross-platform Network Video Copyright Protection Scheme
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着网络视频平台(network video platform, NVP)应用, 网络视频在不同视频平台分享时常面临被侵权和跨平台版权检测问题, 所以本文提出了一种基于区块链跨平台网络视频版权保护方案(blockchain-based cross-platform network video copyright protection scheme, BCVCP) 旨在通过区块链和利用生成的所有权序列(ownership sequence, OS), 进行所有权序列检测, 来实现跨视频平台的网络视频版权保护. 本方案包括身份认证、提取关键帧、所有权序列的生成和检测、网络视频控制管理等部分. 具体来说, 在对网络视频上传或访问等操作之前, 需要进行身份认证, 确保身份信息的安全. 其次, 上传网络视频过程中会生成所有权序列, 存储在分布式节点中. 然后, 提取视频关键帧, 把生成的所有权序列嵌入到视频关键帧中. 最后, 调用智能合约进行跨平台所有权序列检测和对网络视频的传播控制管理, 避免侵权行为. 在实验中, 验证了跨视频平台传输网络视频时所有权编码质量和所有权识别的鲁棒性, 保护了网络视频的版权.

    Abstract:

    With the application of network video platform (NVP), network videos often face copyright infringement and cross-platform copyright detection issues when shared across different video platforms. Therefore, this study proposes a blockchain-based cross-platform network video copyright protection scheme (BCVCP), which aims to protect network video copyrights across platforms by means of blockchain and through ownership sequence (OS) generation and detection. This study includes identity authentication, keyframe extraction, ownership sequence generation and detection, and network video control management. Specifically, before operations such as video uploading or access, identity authentication needs to be carried out to ensure identity information security. Secondly, during the process of uploading network videos, an ownership sequence is generated and stored in distributed nodes. Then, the keyframes of the video are extracted and the generated ownership sequence is embedded into these keyframes. Finally, smart contracts are invoked for cross-platform ownership sequence detection and network video dissemination management to avoid infringement behaviors. In the experiments, the robustness of ownership encoding quality and ownership recognition during cross-platform network video transmission is verified, thereby protecting the copyright of network videos.

    参考文献
    [1] 王露莹, 张峻玮, 赵禹恩, 等. 基于区块链的短视频版权保护与交易研究. 数字出版研究, 2023, 2(1): 89–98.
    [2] Shapiro D, Sergeyev V, Fedoseev V. Improved ECC-based phase watermarking method for video copyright protection. Proceedings of the 11th International Symposium on Digital Forensics and Security (ISDFS). Chattanooga: IEEE, 2023. 1–6.
    [3] 周雯荻. 基于区块链的短视频版权保护机制的研究 [硕士学位论文]. 北京: 北京邮电大学, 2023.
    [4] Wang BW, Jiawei S, Wang WS, et al. Image copyright protection based on blockchain and zero-watermark. IEEE Transactions on Network Science and Engineering, 2022, 9(4): 2188–2199.
    [5] Qi YF, Liu JB, Dong F, et al. Short video copyright protection based on blockchain technology. Proceedings of the 2nd Asia Conference on Computers and Communications (ACCC). Singapore: IEEE, 2021. 106–110.
    [6] Zhao WH, Lin X, Chen YX, et al. A blockchain-based copyright protection system for short videos. Proceedings of the 2022 IEEE International Conference on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). Melbourne: IEEE, 2022. 929–936.
    [7] Zheng JJ, Teng SH, Li PR, et al. A novel video copyright protection scheme based on blockchain and double watermarking. Security and Communication Networks, 2021, 2021(1): 6493306.
    [8] Barua S, Talukder D. A blockchain based decentralized video streaming platform with content protection system. Proceedings of the 23rd International Conference on Computer and Information Technology (ICCIT). Dhaka: IEEE, 2020. 1–6.
    [9] Guo JQ, Li CY, Zhang GZ, et al. Blockchain-enabled digital rights management for multimedia resources of online education. Multimedia Tools and Applications, 2020, 79(15): 9735–9755.
    [10] Garba A, Dwivedi AD, Kamal M, et al. A digital rights management system based on a scalable blockchain. Peer-to-peer Networking and Applications, 2021, 14(5): 2665–2680.
    [11] Chen QY, Kong YH, Cheng LL. A digital copyright protection system based on blockchain and with sharding network. Proceedings of the 10th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/the 9th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). Xiangtan: IEEE, 2023. 393–398.
    [12] Cai ZN. Usage of deep learning and blockchain in compilation and copyright protection of digital music. IEEE Access, 2020, 8: 164144–164154.
    [13] Yang Y, Yu DG, Zhang RB, et al. A video copyright transaction traceability method based on mother-child blockchain. Proceedings of the 3rd International Conference on Blockchain Technology and Applications. Xi’an: ACM, 2020. 1–6.
    [14] Wang BW, Li B, Yuan Y, et al. CPDT: A copyright-preserving data trading scheme based on smart contracts and perceptual hashing. Proceedings of the 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). Wuhan: IEEE, 2022. 968–975.
    [15] Zhao SJ, O’Mahony D. BMCProtector: A blockchain and smart contract based application for music copyright protection. Proceedings of the 2018 International Conference on Blockchain Technology and Application. Xi’an: ACM, 2018. 1–5.
    [16] Jiang C, Huang KM, He SF, et al. Learning segment similarity and alignment in large-scale content based video retrieval. Proceedings of the 29th ACM International Conference on Multimedia. ACM, 2021. 1618–1626.
    [17] Khelifi F, Bouridane A. Perceptual video hashing for content identification and authentication. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(1): 50–67.
    [18] Zhao GJ, Li FY, Yao H, et al. TASTNet: An end-to-end deep fingerprinting net with two-dimensional attention mechanism and spatio-temporal weighted fusion for video content authentication. Journal of Visual Communication and Image Representation, 2023, 96: 103913.
    [19] Yang Y, Yu DG. Short video copyright storage algorithm based on blockchain and expression recognition. International Journal of Digital Multimedia Broadcasting, 2022, 2022(1): 8827815.
    [20] Chen Y, Yan ZL, Dong C, et al. A novel fast video fragment matching algorithm for copyright protection. Proceedings of the 2023 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). Abu Dhabi: IEEE, 2023. 0220–0227.
    [21] Agyekum KOBO, Xia Q, Liu YS, et al. Digital media copyright and content protection using IPFS and blockchain. Proceedings of the 10th International Conference on Image and Graphics. Beijing: Springer, 2019. 266–277.
    [22] Sridhar B, Syambabu V. Security enhancement in video based on gatefold technique for copyright protection. Multimedia Tools and Applications, 2021, 80(6): 8241–8256.
    [23] Priya C, Ramya C. Robust and secure video watermarking based on cellular automata and singular value decomposition for copyright protection. Circuits, Systems, and Signal Processing, 2021, 40(5): 2464–2493.
    [24] Resen MS, Laftah MM. A blind video copyright protection technique in maximum and minimum energy frames based on the fast walsh Hadamard transform (FWHT) and discrete wavelet transform (DWT) and Arnold map. International Journal of Interactive Mobile Technologies, 2022, 16(10): 163–175.
    [25] Liu XY, Zhang YY, Wang JY, et al. Multiple-feature-based zero-watermarking for robust and discriminative copyright protection of DIBR 3D videos. Information Sciences, 2022, 604: 97–114.
    [26] Palomar E, González-Manzano L, Alcaide A, et al. Implementing a privacy-enhanced attribute-based credential system for online social networks with co-ownership management. IET Information Security, 2016, 10(2): 60–68.
    [27] Juarez-Sandoval OU, Cedillo-Hernandez M, Nakano-Miyatake M, et al. Digital image ownership authentication via camouflaged unseen-visible watermarking. Multimedia Tools and Applications, 2018, 77(20): 26601–26634.
    [28] Mohit M, Kaur S, Singh M. Design and implementation of transaction privacy by virtue of ownership and traceability in blockchain based supply chain. Cluster Computing, 2022, 25(3): 2223–2240.
    [29] de Jesus Vega-Hernandez P, Cedillo-Hernandez M, Nakano M, et al. Ownership identification of digital video via unseen-visible watermarking. Proceedings of the 7th International Workshop on Biometrics and Forensics (IWBF). Cancun: IEEE, 2019. 1–6.
    [30] Mandelli S, Bestagini P, Verdoliva L, et al. Facing device attribution problem for stabilized video sequences. IEEE Transactions on Information Forensics and Security, 2020, 15: 14–27.
    [31] Hu LH. Lossless decoding method of compressed coded video based on inter-frame differential background model: Multi-algorithm joint lossless decoding. International Journal of Grid and High Performance Computing, 2023, 15(2): 1–13.
    [32] Liu Y, Guo MX, Zhang J, et al. A novel two-stage separable deep learning framework for practical blind watermarking. Proceedings of the 27th ACM International Conference on Multimedia. Nice: ACM, 2019. 1509–1517.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姚家鹏,訾玲玲,谢义莎.基于区块链的跨平台网络视频版权保护方案.计算机系统应用,2025,34(4):64-75

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-20
  • 最后修改日期:2024-10-21
  • 在线发布日期: 2025-02-18
文章二维码
您是第11482128位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号