用于小样本PTC质量智能诊断的AoT-DCGAN和P-CNN混合深度学习模型
作者:
基金项目:

海相碳酸盐岩油气规模增储上产与勘探开发技术研究 (2023ZZ16)


Hybrid Deep Learning Model of AoT-DCGAN and P-CNN for Intelligent Diagnosis of PTC Quality on Small Sample
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    气密封螺纹连接(PTC)上扣质量的智能诊断对于确保油管在高温、高压、酸性气体条件下的稳固性和密封性至关重要. 准确的诊断依赖于分析不同工况下的PTC曲线以反映上扣质量, 但在实际工业检测中获取大量有效数据面临挑战. 本文提出了一种端到端分类模型, 它结合了异步优化的二维深度卷积生成对抗网络(AoT-DCGAN)和用于PTC曲线诊断的二维卷积神经网络(P-CNN), 旨在提高小样本下的分类性能. 本文提出的方法首先利用AoT-DCGAN来识别真实样本的分布模式, 并生成合成样本. 随后利用P-CNN模型在扩增的数据集上进行训练, 实现PTC曲线的智能诊断. 同时, 本文使用了一种新颖的权重优化策略, 即异步优化(AO), 用来缓解生成器优化阶段的梯度消失问题. 本文提出的方法基于不同数据扩增比率下的召回率、特异性、F1分数、精确度和混淆矩阵进行了性能评估, 结果表明, 随着数据集规模的扩增, 模型的分类能力也在增强, 在数据集规模达到1200张时分类效果最佳. 此外, 在相同的训练集中, P-CNN模型的表现优于传统的机器学习和深度学习模型, 在AC、ATI和NDT曲线上的最佳分类准确率分别达到了95.9%、95.5%和96.7%. 最后, 研究证实在DCGAN的训练过程中使用异步优化会使损失函数更稳定地下降.

    Abstract:

    The intelligent diagnosis of premium threaded connections (PTC) is crucial for ensuring the stability and sealing of oil pipes under high temperature, high pressure, and acidic gas conditions. Accurate diagnosis relies on analyzing PTC curves under different operating conditions to reflect the quality of the buckling, but obtaining a large amount of valid data in actual industrial inspections is challenging. This study introduces an end-to-end classification model that combines asynchronous optimized 2D deep convolutional generative adversarial network (AoT-DCGAN) and 2D convolutional neural network (P-CNN), aiming to improve classification performance with small sample sizes. The proposed method first utilizes AoT-DCGAN to identify the distribution pattern of original samples and generate corresponding synthetic samples. At the same time, a novel weight optimization strategy, asynchronous optimization (AO), is implemented to alleviate the gradient vanishing problem during the generator optimization phase. Subsequently, a novel P-CNN model is designed and trained on an expanded dataset to achieve automatic classification of PTC curves. The method is evaluated based on recall, specificity, F1 score, precision, and confusion matrix under different data augmentation ratios. The results indicate that as the dataset size increases, the model’s classification ability improves, peaking at a dataset size of 1200. In addition, within the same training set, the performance of the P-CNN model outperforms traditional machine learning and deep learning models, achieving optimal classification accuracies of 95.9%, 95.5%, and 96.7% on the AC, ATI, and NDT curves, respectively. Finally, research confirms that applying asynchronous optimization during the training process of DCGAN results in a more stable decrease in the loss function.

    参考文献
    相似文献
    引证文献
引用本文

李文哲,李浩然,王涛,马梓瀚,汪传磊,郭丽雪.用于小样本PTC质量智能诊断的AoT-DCGAN和P-CNN混合深度学习模型.计算机系统应用,,():1-14

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-03
  • 最后修改日期:2024-09-24
  • 在线发布日期: 2025-04-01
文章二维码
您是第11318801位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号