基于改进DeepLabv3+的道路积水检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

2022年度沈阳市科学技术计划“揭榜挂帅”产业共性技术项目(22-316-1-07); 辽宁省应用基础研究项目(2022JH2/101300243)


Road Water Accumulation Detection Based on Improved DeepLabv3+
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来, 随着城市化进程的加快, 城市排水系统在面对极端天气时常难以应对, 道路积水问题频繁发生. 为了解决道路积水的检测问题, 本文基于DeepLabv3+模型提出改进算法. 首先, 在解码器端设计加权双向特征金字塔网络(bidirectional feature pyramid network, BiFPN)模块, 利用主干网络获取的不同尺度低层特征映射进行融合, 充分发挥从骨干网络获取的多尺度信息的潜力. 其次, 利用Mamba改进Transformer模块设计并行分支对高级特征映射进行处理, 构建全局依赖, 弥补ASPP中空洞卷积可能造成的局部信息丢失问题. 最后, 引入极化自注意力机制(polarized self-attention, PSA)模块, 减少双分支输出直接相加对于数据可能带来不同的影响. 实验结果表明, 在道路积水数据集上, 改进算法mIoU为87.54%, PA为96.61%, 与原算法相比, mIoU提高了4.22%, PA提高了1.66%.

    Abstract:

    In recent years, with the acceleration of urbanization, urban drainage systems often struggle to cope with extreme weather, and road waterlogging occurs frequently. To solve the road waterlogging detection problem, this paper proposes an improved algorithm based on the DeepLabv3+ model. Firstly, a weighted bidirectional feature pyramid network (BiFPN) module is designed at the decoder side, which utilizes the different scales of low-level feature mapping obtained from the backbone network for fusion, giving full play to the potential of the multi-scale information obtained from the backbone network. Secondly, the Mamba-improved Transformer module is utilized to design parallel branches to process high-level feature mappings, construct global dependencies, and compensate for the possible local information loss caused by dilated convolution in ASPP. Finally, the polarized self-attention (PSA) module is introduced to mitigate the possible different effects of the direct addition of two-branch outputs on the data. The experimental results show that on the road waterlogging dataset, the improved algorithm has an mIoU of 87.54% and a PA of 96.61%, which is an improvement of 4.22% in terms of mIoU and 1.66% in terms of PA compared with the original algorithm.

    参考文献
    相似文献
    引证文献
引用本文

贾军营,吴兴宇,杨海波.基于改进DeepLabv3+的道路积水检测.计算机系统应用,,():1-9

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-18
  • 最后修改日期:2024-10-10
  • 录用日期:
  • 在线发布日期: 2025-02-18
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号