基于多尺度特征和上下文聚合的结肠息肉图像分割网络
作者:
基金项目:

广东省重点领域研发计划(2023B1111050010, 2020B0101100001)


Colon Polyp Image Segmentation Network Based on Multi-scale Features and Contextual Aggregation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为解决结肠息肉图像语义分割任务中存在的边界不清晰以及分割结果不连贯、不完整甚至丢失的问题, 提出一种基于多尺度特征和上下文聚合的结肠息肉图像分割网络 (colon polyp image segmentation network based on multi-scale features and contextual aggregation, MFCA-Net). 网络选择PvTv2作为特征提取主干网络, 设计多尺度特征互补模块 (MFCM)用以提取丰富的多尺度局部信息, 减少息肉形态变化对分割结果的影响; 设计全局信息增强模块 (GIEM), 构建嵌入位置注意力的大核深度卷积实现对息肉的精确定位, 提升网络辨别复杂背景的能力; 设计高级语义引导的上下文聚合模块 (HSCAM), 以全局特征引导局部特征, 差异性互补和交叉融合浅层细节信息与深层语义信息, 提升分割的连贯性和完整性; 设计边界感知模块 (BPM), 结合传统图像处理方法与深度学习方法优化边界特征, 实现细粒度分割, 进而获取更清晰的边界. 实验表明, 在Kvasir、ClinicDB、ColonDB和ETIS等公开的结肠息肉图像数据集上, 所提出的网络均取得相较于当前主流算法更高的mDicemIoU分数, 具有更高的分割准确率和更强的鲁棒性.

    Abstract:

    To solve unclear boundaries and incoherent, incomplete, or even lost segmentation results in the semantic segmentation task of colon polyp images, a colon polyp image segmentation network named colon polyp image segmentation network based on multi-scale features and contextual aggregation (MFCA-Net) is proposed. The network selects PvTv2 as the backbone network for feature extraction. The multi-scale feature complement module (MFCM) is designed to extract rich multi-scale local information and reduce the influence of polyp morphology changes on segmentation results. The global information enhancement module (GIEM) is designed. A large-kernel deep convolution embedded with positional attention is constructed to accurately locate polyps and improve the network’s ability to distinguish complex backgrounds. The high-level semantic-guided context aggregation module (HSCAM) is designed. It guides local features with global features, complements differences, and cross-fuses shallow details and deep semantic information to improve the coherence and integrity of segmentation. The boundary perception module (BPM) is designed. Boundary features are optimized by combining traditional image processing methods and deep learning methods to achieve fine-grained segmentation and obtain clearer boundaries. Experiments show that the proposed network obtains higher mDice and mIoU scores compared with current mainstream algorithms on the publicly available colon polyp image datasets such as Kvasir, ClinicDB, ColonDB, and ETIS, and has higher segmentation accuracy and robustness.

    参考文献
    [1] Han BF, Zheng RS, Zeng HM, et al. Cancer incidence and mortality in China, 2022. Journal of the National Cancer Center, 2024, 4(1): 47–53.
    [2] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015. 3431–3440.
    [3] Brandao P, Mazomenos E, Ciuti G, et al. Fully convolutional neural networks for polyp segmentation in colonoscopy. Proceedings of the Medical Imaging 2017: Computer-aided Diagnosis. Orlando: SPIE, 2017. 101340F.
    [4] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. Proceedings of the 18th International Conference on Medical Image Computing and Computer-assisted Intervention. Munich: Springer, 2015. 234–241.
    [5] Zhou ZW, Siddiquee MMR, Tajbakhsh N, et al. UNet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856–1867.
    [6] Jha D, Smedsrud PH, Riegler MA, et al. ResUNet++: An advanced architecture for medical image segmentation. Proceedings of the 2019 IEEE International Symposium on Multimedia (ISM). San Diego: IEEE, 2019. 225–230.
    [7] Jha D, Riegler MA, Johansen D, et al. DoubleU-Net: A deep convolutional neural network for medical image segmentation. Proceedings of the 33rd IEEE International Symposium on Computer-based Medical Systems (CBMS). Rochester: IEEE, 2020. 558–564.
    [8] Fan DP, Ji GP, Zhou T, et al. PraNet: Parallel reverse attention network for polyp segmentation. Proceedings of the 23rd International Conference on Medical Image Computing and Computer Assisted Intervention. Lima: Springer, 2020. 263–273.
    [9] Zhong ZL, Lin ZQ, Bidart R, et al. Squeeze-and-attention networks for semantic segmentation. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 13062–13071.
    [10] 刘方瑾. 基于卷积神经网络和Transformer的结直肠息肉分割方法研究 [硕士学位论文]. 烟台: 山东工商学院, 2023.
    [11] Qiu ZH, Wang ZC, Zhang MM, et al. BDG-Net: Boundary distribution guided network for accurate polyp segmentation. Proceedings of the Medical Imaging 2022: Image Processing. San Diego: SPIE, 2022. 1203230.
    [12] Liu WK, Li ZG, Xia JA, et al. MCSF-Net: A multi-scale channel spatial fusion network for real-time polyp segmentation. Physics in Medicine & Biology, 2023, 68(17): 175041.
    [13] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale. Proceedings of the 9th International Conference on Learning Representations. OpenReview.net, 2021.
    [14] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 6000–6010.
    [15] Chen JN, Lu YY, Yu QH, et al. TransUNet: Transformers make strong encoders for medical image segmentation. arXiv:2102.04306, 2021.
    [16] Zhang YD, Liu HY, Hu Q. TransFuse: Fusing Transformers and CNNs for medical image segmentation. Proceedings of the 24th International Conference on Medical Image Computing and Computer Assisted Intervention. Strasbourg: Springer, 2021. 14–24.
    [17] Wang WH, Xie EZ, Li X, et al. Pyramid vision Transformer: A versatile backbone for dense prediction without convolutions. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021. 548–558.
    [18] Jha D, Smedsrud PH, Riegler MA, et al. Kvasir-SEG: A segmented polyp dataset. Proceedings of the 26th International Conference on MultiMedia Modeling. Daejeon: Springer, 2020. 451–462.
    [19] Bernal J, Sánchez FJ, Fernández-Esparrach G, et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Computerized Medical Imaging and Graphics, 2015, 43: 99–111.
    [20] Tajbakhsh N, Gurudu SR, Liang JM. Automated polyp detection in colonoscopy videos using shape and context information. IEEE Transactions on Medical Imaging, 2016, 35(2): 630–644.
    [21] Silva J, Histace A, Romain O, et al. Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. International Journal of Computer Assisted Radiology and Surgery, 2014, 9(2): 283–293.
    [22] Wang WH, Xie EZ, Li X, et al. PVT v2: Improved baselines with pyramid vision Transformer. Computational Visual Media, 2022, 8(3): 415–424.
    [23] Bentley PM, Mcdonnell JTE. Wavelet transforms: An introduction. Electronics & Communication Engineering Journal, 1994, 6(4): 175–186.
    [24] 于晓, 林世基, 庄光耀, 等. 基于多梯度融合的污水域污染物边缘提取算法研究. 黑龙江工业学院学报(综合版), 2023, 23(6): 78–86.
    [25] Chen SH, Tan XL, Wang B, et al. Reverse attention for salient object detection. Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018. 236–252.
    [26] Sandler M, Howard A, Zhu ML, et al. MobileNetV2: Inverted residuals and linear bottlenecks. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 4510–4520.
    [27] Wang CC, He W, Nie Y, et al. Gold-YOLO: Efficient object detector via gather-and-distribute mechanism. Proceedings of the 37th International Conference on Neural Information Processing Systems. New Orleans: Curran Associates Inc., 2024. 2224.
    [28] Wang HY, Kembhavi A, Farhadi A, et al. ELASTIC: Improving CNNs with dynamic scaling policies. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 2253–2262.
    [29] Hou QB, Zhou DQ, Feng JS. Coordinate attention for efficient mobile network design. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. 13708–13717.
    [30] Guo MH, Lu CZ, Hou QB, et al. SegNeXt: Rethinking convolutional attention design for semantic segmentation. Proceedings of the 36th International Conference on Neural Information Processing Systems. New Orleans: Curran Associates Inc., 2022. 84.
    [31] Chen J, Yang LB, Wang H, et al. Road extraction from high-resolution remote sensing images via local and global context reasoning. Remote Sensing, 2023, 15(17): 4177.
    [32] 徐康业, 陈建平, 陈平华. 基于局部-全局特征交互的双分支结肠息肉分割网络. 计算机系统应用, 2024, 33(4): 133–142.
    [33] Zhao XQ, Jia HP, Pang YW, et al. M2SNet: Multi-scale in multi-scale subtraction network for medical image segmentation. arXiv:2303.10894, 2023.
    [34] Fang YQ, Chen C, Yuan YX, et al. Selective feature aggregation network with area-boundary constraints for polyp segmentation. Proceedings of the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention. Shenzhen: Springer, 2019. 302–310.
    [35] Patel K, Bur AM, Wang GH. Enhanced U-Net: A feature enhancement network for polyp segmentation. Proceedings of the 18th Conference on Robots and Vision (CRV). Burnaby: IEEE, 2021. 181–188.
    [36] Kim T, Lee H, Kim D. UACANet: Uncertainty augmented context attention for polyp segmentation. Proceedings of the 29th ACM International Conference on Multimedia. ACM, 2021. 2167–2175.
    [37] Nguyen M, Bui TT, Van Nguyen Q, et al. LAPFormer: A light and accurate polyp segmentation Transformer. arXiv:2210.04393, 2022.
    [38] Liu JQ, Zhang WW, Liu Y, et al. Polyp segmentation based on implicit edge-guided cross-layer fusion networks. Scientific Reports, 2024, 14(1): 11678.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

许海英,徐健皓,陈平华.基于多尺度特征和上下文聚合的结肠息肉图像分割网络.计算机系统应用,2025,34(3):115-123

复制
分享
文章指标
  • 点击次数:46
  • 下载次数: 836
  • HTML阅读次数: 10
  • 引用次数: 0
历史
  • 收稿日期:2024-09-08
  • 最后修改日期:2024-09-30
  • 在线发布日期: 2025-01-16
文章二维码
您是第10784838位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号