Point-GBLS: 结合深宽度学习的三维点云分类网络
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山西省自然科学基金(202203021221145); 国家自然科学基金(62072325)


Point-GBLS: 3D Point Cloud Classification Network Combined with Deep-broad Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于点云的三维物体识别和检测是计算机视觉和自主导航领域的一个重要研究课题. 如今, 深度学习算法大大提高了三维点云分类的准确性和鲁棒性. 然而, 深度学习网络通常存在网络结构复杂、训练过程耗时等问题. 本文提出了一种三维点云分类网络Point-GBLS, 它将深度学习和宽度学习系统结合在一起. 网络结构简单, 训练时间短. 首先通过基于深度学习的特征提取网络提取点云特征, 然后用改进的宽度学习系统对其进行分类. ModelNet40和ScanObjectNN数据集上的实验表明, Point-GBLS识别准确率分别达到92%以上和78%以上, 训练时间低于同类深度学习方法的50%以上, 优于具有相同骨干的深度学习网络.

    Abstract:

    3D object recognition and detection based on point clouds is an important research topic in the fields of computer vision and autonomous navigation. Nowadays, deep learning algorithms have greatly improved the accuracy and robustness of 3D point cloud classification. However, deep learning networks usually have problems such as complex network structure and time-consuming training. This study proposes a three-dimensional point cloud classification network named Point-GBLS, which combines deep learning and a broad learning system. The network structure is simple and the training time is short. Firstly, point cloud features are extracted by a deep learning-based feature extraction network. Then, an improved broad learning system is used to classify them. Experiments on the ModelNet40 and ScanObjectNN dataset show that the recognition accuracy of Point-GBLS is more than 92% and 78% respectively. The training time is less than 50% of that of similar deep learning methods. It is superior to deep learning networks with the same backbone.

    参考文献
    相似文献
    引证文献
引用本文

张国有,左嘉欣,潘理虎,郝志祥,郭伟,张雪楠. Point-GBLS: 结合深宽度学习的三维点云分类网络.计算机系统应用,,():1-13

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-07
  • 最后修改日期:2024-09-30
  • 录用日期:
  • 在线发布日期: 2025-01-16
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号