考虑外部敌手的去中心化联邦学习梯度聚合协议
作者:
基金项目:

天津市自然科学基金重点项目(21JCZDJC00130)


Decentralized Federated Learning Gradient Aggregation Protocol Considering External Adversaries
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [12]
  • | | |
  • 文章评论
    摘要:

    联邦学习是一种分布式机器学习技术, 允许参与方在本地训练模型并上传更新至中央服务器, 由中央服务器聚合更新来生成更优的全局模型, 从而保障数据隐私和解决数据孤岛问题. 然而, 梯度聚合过程依赖中央服务器, 这可能导致单点故障, 且中央服务器也是潜在的恶意攻击者. 因此, 联邦学习必须去中心化. 现有的去中心化方案没有考虑外部敌手和数据通信带来的性能瓶颈问题. 为了解决上述问题, 提出一种考虑外部敌手的去中心化联邦学习方法. 该方法应用Shamir秘密共享方案, 将模型更新分成多个份额, 保护梯度隐私. 该方法提出一种洪泛共识协议, 每轮随机选取某一参与方作为中央服务器完成全局聚合, 高效实现联邦学习的去中心化. 同时, 该方法引入BLS聚合签名, 防范外部敌手攻击, 提升验证效率. 理论分析和实验结果表明, 该方法是安全高效的, 相比同类联邦学习方法具有更高的效率.

    Abstract:

    Federated learning is a distributed machine learning technique that allows participants to train models locally and upload updates to a central server. The central server aggregates the updates to generate a better global model, ensuring data privacy and solving the problem of data silos. However, the gradient aggregation relies on a central server, which may lead to a single point of failure, and the central server is also a potential malicious attacker. Therefore, federated learning needs to be decentralized. The existing decentralized solutions ignore external adversaries and the performance bottlenecks issues caused by data communication. To address the above issues, this study proposes a decentralized federated learning method considering external adversaries. The method applies Shamir’s secret sharing scheme to divide model updates into multiple shares to protect gradient privacy. The method proposes a flooding consensus protocol that randomly selects a participant as the central server in each round to complete global aggregation, efficiently achieving the decentralization of federated learning. At the same time, the method introduces BLS aggregate signatures to prevent external adversary attacks and improve verification efficiency. Theoretical analysis and experimental results indicate that this method is safe and efficient, having higher efficiency than similar federated learning methods.

    参考文献
    [1] McMahan HB, Moore E, Ramage D, et al. Communication-efficient learning of deep networks from decentralized data. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. Fort Lauderdale: PMLR, 2017. 1273–1282.
    [2] 王攀, 缪祥华. 联邦学习在船舶物流安全领域的应用. 中国水运, 2024(6): 74–76.
    [3] Zhang C, Liu X, Xu J, et al. An edge based federated learning framework for person re-identification in UAV delivery service. Proceedings of the 2021 IEEE International Conference on Web Services (ICWS). Chicago: IEEE, 2021. 500–505.
    [4] Supriya Y, Srivastava G, Dasaradharami Reddy K, et al. PSO-enabled federated learning for detecting ships in supply chain management. Proceedings of the 30th International Conference on Neural Information Processing. Changsha: Springer, 2023. 413–424.
    [5] 林宏峥, 金维国, 宋国英, 等. 基于金融场景数据流通的安全技术研究. 网络安全技术与应用, 2024(3): 105–107.
    [6] 张卓. 基于联邦学习的数据隐私权保护研究——以微众银行、平安科技等为例的分析. 国外社会科学前沿, 2024(5): 86–99.
    [7] Long GD, Tan Y, Jiang J, et al. Federated learning for open banking. In: Yang Q, Fan LX, Yu H, eds. Federated Learning: Privacy and Incentive. Cham: Springer, 2020. 240–254.
    [8] Byrd D, Polychroniadou A. Differentially private secure multi-party computation for federated learning in financial applications. Proceedings of the 1st ACM International Conference on AI in Finance. New York: ACM, 2020. 16.
    [9] 李志, 林森, 张强. 面向轨道交通智能故障检测联邦学习模型的云边协同训练方法. 计算机科学, 1–12. http://kns.cnki.net/kcms/detail/50.1075.tp.20240625.1100.026.html. (2024-06-26)[2024-08-05].
    [10] 乐俊青, 谭州勇, 张迪, 等. 面向车联网数据持续共享的安全高效联邦学习. 计算机研究与发展, 2024, 61(9): 2199–2212.
    [11] Manias DM, Shami A. Making a case for federated learning in the internet of vehicles and intelligent transportation systems. IEEE Network, 2021, 35(3): 88–94.
    [12] Lu YL, Huang XH, Zhang K, et al. Blockchain empowered asynchronous federated learning for secure data sharing in internet of vehicles. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4298–4311.
    [13] 张连福, 谭作文. 一种面向多模态医疗数据的联邦学习隐私保护方法. 计算机科学, 2023, 50(S2): 230800021.
    [14] 陆枫, 李炜, 顾琳, 等. 基于迭代协作学习框架的信誉医学参与方选择. 计算机研究与发展, 2024, 61(9): 2347–2363.
    [15] Antunes RS, da Costa CA, Küderle A, et al. Federated learning for healthcare: Systematic review and architecture proposal. ACM Transactions on Intelligent Systems and Technology (TIST), 2022, 13(4): 54.
    [16] Li JC, Meng Y, Ma LC, et al. A federated learning based privacy-preserving smart healthcare system. IEEE Transactions on Industrial Informatics, 2022, 18(3): 2021–2031.
    [17] 吴维鑫, 侯会文, 石乐义. 基于深度学习和联邦学习的工控入侵检测研究. 微电子学与计算机, 2024, 41(9): 22–31.
    [18] 李健俊, 王万江, 陈鹏, 等. 基于联邦学习的工控机业务行为分布式安全检测. 计算机集成制造系统, 1–23. http://kns.cnki.net/kcms/detail/11.5946.TP.20231023.0904.004.html. (2023-10-13)[2024-08-05].
    [19] Huong TT, Bac TP, Long DM, et al. Detecting cyberattacks using anomaly detection in industrial control systems: A federated learning approach. Computers in Industry, 2021, 132: 103509.
    [20] Truong HT, Ta BP, Le QA, et al. Light-weight federated learning-based anomaly detection for time-series data in industrial control systems. Computers in Industry, 2022, 140: 103692.
    [21] Kursawe K, Danezis G, Kohlweiss M. Privacy-friendly aggregation for the smart-grid. Proceedings of the 11th International Symposium on Privacy Enhancing Technologies. Cham: Springer, 2011. 175–191.
    [22] Li XH, Cheng LX, Sun C, et al. Federated-learning-empowered collaborative data sharing for vehicular edge networks. IEEE Network, 2021, 35(3): 116–124.
    [23] Wang ZP, Dong NQ, Sun JH, et al. zkFL: Zero-knowledge proof-based gradient aggregation for federated learning. IEEE Transactions on Big Data, 2024.
    [24] Choi B, Sohn J, Han DJ, et al. Communication-computation efficient secure aggregation for federated learning. Proceedings of the 9th International Conference on Learning Representations. Vienna: OpenReview.net, 2021.
    [25] Khojir HF, Alhadidi D, Rouhani S, et al. FedShare: Secure aggregation based on additive secret sharing in federated learning. Proceedings of the 27th International Database Engineered Applications Symposium. Heraklion: ACM, 2023. 25–33.
    [26] Lu Y, Yu ZX, Suri N. Privacy-preserving decentralized federated learning over time-varying communication graph. ACM Transactions on Privacy and Security, 2023, 26(3): 33.
    [27] Shokri R, Stronati M, Song CZ, et al. Membership inference attacks against machine learning models. Proceedings of the 2017 IEEE Symposium on Security and Privacy (SP). San Jose: IEEE, 2017. 3–18.
    [28] Fredrikson M, Jha S, Ristenpart T. Model inversion attacks that exploit confidence information and basic countermeasures. Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. Denver: ACM, 2015. 1322–1333.
    [29] Pereira D, Reis PR, Borges F. Secure aggregation protocol based on DC-nets and secret sharing for decentralized federated learning. Sensors, 2024, 24(4): 1299.
    [30] Mugunthan V, Peraire-Bueno A, Kagal L. PrivacyFL: A simulator for privacy-preserving and secure federated learning. Proceedings of the 29th ACM International Conference on Information & Knowledge Management. ACM, 2020. 3085–3092.
    [31] Kanchan S, Jang JW, Yoon JY, et al. Efficient and privacy-preserving group signature for federated learning. Future Generation Computer Systems, 2023, 147: 93–106.
    [32] Shamir A. How to share a secret. Communications of the ACM, 1979, 22(11): 612–613.
    [33] Boneh D, Gentry C, Lynn B, et al. Aggregate and verifiably encrypted signatures from bilinear maps. Proceedings of the 22nd International Conference on the Theory and Applications of Cryptographic Techniques. Warsaw: Springer, 2003. 416–432.
    [34] Gordon Dr D. Discrete logarithm problem. In: van Tilborg HCA, Jajodia S, eds. Encyclopedia of Cryptography and Security. 2nd ed., Boston: Springer. 352–353.
    [35] Joux A, Nguyen K. Separating decision Diffie-Hellman from computational Diffie-Hellman in cryptographic groups. Journal of Cryptology, 2023, 16(4): 239–247.
    [36] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vega: IEEE, 2016. 770–778.
    [37] Huang G, Liu Z, van der Maaten L, et al. Densely connected convolutional networks. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017. 4700–4708.
    [38] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735–1780.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邹洁丽,张子华,高铁杠.考虑外部敌手的去中心化联邦学习梯度聚合协议.计算机系统应用,2025,34(3):14-26

复制
分享
文章指标
  • 点击次数:52
  • 下载次数: 1022
  • HTML阅读次数: 25
  • 引用次数: 0
历史
  • 收稿日期:2024-08-20
  • 最后修改日期:2024-09-19
  • 在线发布日期: 2025-01-21
文章二维码
您是第10784823位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号