基于用户信任关系的局部贝叶斯概率矩阵分解
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Local Bayesian Probabilistic Matrix Factorization Based on User Trust Relationship
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    矩阵分解模型是推荐系统中的经典模型之一, 可用来预测用户对物品的评分, 进而对用户进行推荐, 改善用户体验. 当前的矩阵分解模型无法有效提取用户之间的局部相似关系, 导致评分预测效果不佳, 且存在冷启动问题. 社交网络的发展使得用户之间的信任关系成为推荐系统的重要研究工具, 因此本文提出基于用户信任关系的局部贝叶斯概率矩阵分解模型(TLBPMF)用于评分预测, 结合用户的信任关系信息对用户的评分进行研究, 识别出具有相似偏好的用户群体并进行聚类, 根据聚类结果获取评分子矩阵, 对每个子矩阵分别建立概率矩阵分解模型, 深入挖掘用户之间的局部相似关系, 利用吉布斯抽样算法进行参数估计. 选择电影网站的评分数据集进行实验, 结果表明该模型在预测精度上优于基准模型, 并且在冷启动用户上比基准模型有更优越的表现.

    Abstract:

    The matrix factorization model is one of the classic models in recommendation systems. It can be used to predict users’ ratings on items, and then make recommendations to users to improve user experience. Current matrix factorization models cannot effectively extract the local similarity relationship between users, which leads to poor rating prediction and the cold start problem. With the development of social networks, the trust relationship between users has become an important research tool for recommendation systems. Therefore, this study proposes a local Bayesian probabilistic matrix factorization model based on user trust relationship (TLBPMF) for rating prediction. The model studies users’ ratings by combining the trust relationship information of users. It identifies user groups with similar preferences and clusters them. According to the clustering results, rating submatrixes are obtained. A probabilistic matrix factorization model is established for each submatrix to deeply explore the local similarity relationship between users. The parameters of this model are estimated by the Gibbs sampling algorithm. A rating dataset from a film website is selected for experiments. The results show that the model is superior to the benchmark model in prediction accuracy and has better performance on cold start users.

    参考文献
    相似文献
    引证文献
引用本文

朱敏慧,赵家杨.基于用户信任关系的局部贝叶斯概率矩阵分解.计算机系统应用,,():1-10

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-24
  • 最后修改日期:2024-09-19
  • 录用日期:
  • 在线发布日期: 2025-01-16
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号