基于GSM-QGA的自适应椭圆作用域APF路径规划
作者:
基金项目:

黑龙江省自然科学基金(LH2022F035); 黑龙江省普通本科高等学校青年创新人才培养计划(UNPYSCT-2020212); 哈尔滨商业大学“青年科研创新人才”培育计划(2023-KYYWF-0983)


Adaptive Elliptic Scope APF Path Planning Based on GSM-QGA
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对传统人工势场法(artificial potential field, APF)未充分考虑车辆避碰风险分布差异性和陷入局部极值导致路径规划失败的问题, 提出一种基于梯度统计变异量子遗传算法(gradient statistical mutation quantum genetic algorithm, GSM-QGA)的自适应椭圆作用域人工势场法. 在传统斥力场圆形作用域的基础上, 通过分析车辆和障碍物的相对运动状态, 定义斥力势场动态椭圆作用域计算方法; 同时对势场函数影响因素进行分析, 引入速度因素分别完成斥力势场函数和引力势场函数的设计; 将梯度统计变异量子遗传算法作为改进人工势场局部最优修正策略, 当车辆陷入局部极值往复运动时, 基于车辆当前位置构建伪全局地图, 规划可行路径跳出局部极值范围. 仿真实验结果表明, 改进算法规划的路径不仅可以有效避免车辆陷入局部极值, 减少车辆不必要的避障操作, 而且在路径平滑性和路径长度等方面相比于传统APF算法和固定椭圆域APF算法均具有优势, 所规划路径长度分别缩短6.37%和9.14%.

    Abstract:

    To address the problems that the traditional artificial potential field (APF) does not fully consider the variability of vehicle collision avoidance risk distribution and that falling into local extremum leads to path planning failure, this study proposes an adaptive elliptic scope APF based on gradient statistical mutation quantum genetic algorithm (GSM-QGA). Based on the traditional circular scope of the repulsive field, the study designs a calculation method for the dynamic elliptic scope of the repulsive potential field by analyzing the relative motion state of vehicles and obstacles. At the same time, through the analysis of the influencing factors of the potential field function, the velocity factor is introduced to complete the design of the repulsive potential field and gravitational potential field function. The GSM-QGA is used as the local optimum correction strategy for the improved artificial potential field. When the vehicle falls into the local extremum and moves back and forth, a pseudo-global map is constructed according to the current position of the vehicle, and a feasible path is planned to jump out of the local extremum range. The simulation results show that the path planned by the improved algorithm not only can effectively prevent vehicles from getting stuck in local extremum and reduce unnecessary obstacle avoidance operations of vehicles but also has advantages over traditional APF algorithm and APF algorithm based on fixed elliptic scope in terms of path smoothness and path length. The length of the planned path is shortened by 6.37% and 9.14%, respectively.

    参考文献
    [1] Hu G, Du B, Wei G. HG-SMA: Hierarchical guided slime mould algorithm for smooth path planning. Artificial Intelligence Review, 2023, 56(9): 9267–9327.
    [2] Zha M, Wang ZW, Feng J, et al. Unmanned vehicle route planning based on improved artificial potential field method. Journal of Physics: Conference Series, 2020, 1453(1): 012059.
    [3] 王锋, 李凯璇, 朱子文, 等. 基于改进A*蚁群融合算法的路径规划研究. 火力与指挥控制, 2024, 49(1): 111–117, 123.
    [4] Erke S, Bin D, Yiming N, et al. An improved A-Star based path planning algorithm for autonomous land vehicles. International Journal of Advanced Robotic Systems, 2020, 17(5).
    [5] 徐兴, 俞旭阳, 赵芸, 等. 基于改进遗传算法的移动机器人全局路径规划. 计算机集成制造系统, 2022, 28(6): 1659–1672.
    [6] 牛秦玉, 董鑫炜, 傅垚. 基于蚁群算法启发式策略改进的AGV路径规划. 计算机集成制造系统. https://link.cnki.net/urlid/11.5946.tp.20231226.1350.004. (2023-12-27) [2024-03-18].
    [7] Han S, Wang L, Wang YT, et al. A dynamically hybrid path planning for unmanned surface vehicles based on non-uniform Theta* and improved dynamic windows approach. Ocean Engineering, 2022, 257: 111655.
    [8] 王旭,朱其新,朱永红. 面向二维移动机器人的路径规划算法综述. 计算机工程与应用, 2023, 59(20): 51–66.
    [9] Jia YJ, Qu LD, Li XQ. Automatic path planning of unmanned combat aerial vehicle based on double-layer coding method with enhanced grey wolf optimizer. Artificial Intelligence Review, 2023, 56(10): 12257–12314.
    [10] Wu L, Huang XD, Cui JG, et al. Modified adaptive ant colony optimization algorithm and its application for solving path planning of mobile robot. Expert Systems with Applications, 2023, 215: 119410.
    [11] Sun YH, Fang M, Su YX. AGV path planning based on improved Dijkstra algorithm. Journal of Physics: Conference Series, 2021, 1746(1): 012052.
    [12] Fransen K, Van Eekelen J. Efficient path planning for automated guided vehicles using A* (Astar) algorithm incorporating turning costs in search heuristic. International Journal of Production Research, 2023, 61(3): 707–725.
    [13] Khatib O. The potential field approach and operational space formulation in robot control. Adaptive and Learning Systems: Theory and Applications. Boston: Springer, 1986. 367–377.
    [14] Ma QL, Li MQ, Huang GH, et al. Overtaking path planning for CAV based on improved artificial potential field. IEEE Transactions on Vehicular Technology, 2024, 73(2): 1611–1622.
    [15] Xiao M, Zuan L, Song RY, et al. Local path planning for unmanned surface vehicle with improved artificial potential field method. Journal of Physics: Conference Series, 2020, 1634(1): 012125.
    [16] Li HC, Liu WJ, Yang C, et al. An optimization-based path planning approach for autonomous vehicles using the DynEFWA-artificial potential field. IEEE Transactions on Intelligent Vehicles, 2022, 7(2): 263–272.
    [17] Zhang WY, Zeng Y, Wang SF, et al. Research on the local path planning of an orchard mowing robot based on an elliptic repulsion scope boundary constraint potential field method. Frontiers in Plant Science, 2023, 14: 1184352.
    [18] Li H, Qin HP, Han ZA, et al. Vehicle path planning based on gradient statistical mutation quantum genetic algorithm. International Journal of Advanced Computer Science and Applications, 2023, 14(6): 598–607.
    [19] 曲志坚, 陈宇航, 李盘靖, 等. 基于多算子协同进化的自适应并行量子遗传算法. 电子学报, 2019, 47(2): 266–273.
    [20] 马莹, 王怀晓, 刘贺, 等. 一种新的自适应量子遗传算法研究. 计算机工程与应用, 2018, 54(20): 99–103.
    [21] Abdulhussien AA, Nasrudin MF, Darwish SM, et al. Feature selection method based on quantum inspired genetic algorithm for Arabic signature verification. Journal of King Saud University-Computer and Information Sciences, 2023, 35(3): 141–156.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李晖,刘述娟,秦慧萍,鞠明媚,杜左强.基于GSM-QGA的自适应椭圆作用域APF路径规划.计算机系统应用,2025,34(3):248-258

复制
分享
文章指标
  • 点击次数:37
  • 下载次数: 706
  • HTML阅读次数: 8
  • 引用次数: 0
历史
  • 收稿日期:2024-08-08
  • 最后修改日期:2024-09-19
  • 在线发布日期: 2025-01-16
文章二维码
您是第10782497位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号