跨模态通道权重调整的半监督分类网络
作者:

Semi-supervised Classification Network with Cross-modal Channel Weight Adjustment
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • | | | |
  • 文章评论
    摘要:

    地物分类是遥感图像领域的重要研究方向, 近年来高光谱图像和激光雷达数据联合分类的技术备受关注. 现有的深度学习模型的分类性能显著依赖于标注样本的丰富度及优质程度, 这在实际应用中常构成重大挑战. 此外, 很多模型未能有效地利用高光谱图像和激光雷达数据的信息互补性. 针对上述问题, 本文提出了一种跨模态通道权重调整的半监督双分支分类网络, 通过注意力机制, 深入剖析两种数据通道之间的相似度, 并据此自适应地调整各通道的权重. 同时, 本文结合一致性正则化与伪标签的半监督方法, 有效地利用了未标记样本的信息. 在针对Houston和MUUFL这两个标志性的联合数据集进行高光谱图像与激光雷达数据联合分类的实验中, 所提方法展现出相较于现有分类模型的显著优势, 有效提高了分类精度与效率.

    Abstract:

    Terrain classification is a crucial research direction in remote sensing imagery. The technology of joint hyperspectral images and LiDAR data classification has drawn much attention in recent years. The classification performance of existing deep learning models significantly depends on the richness and quality of labeled samples, which often poses a major challenge in practical applications. In addition, many models fail to effectively utilize the information complementarity between hyperspectral images and LiDAR data. To solve the above problems, this study proposes a semi-supervised double-branch classification network with cross-modal channel weight adjustment. Through the attention mechanism, the similarity between two data channels is analyzed deeply, and the weight of each channel is adaptively adjusted accordingly. At the same time, the semi-supervised method of consistency regularization and pseudo-labeling is combined to effectively utilize the information of unlabeled samples. In the experiment of joint classification of hyperspectral images and LiDAR data on the two iconic joint datasets of Houston and MUUFL, the proposed method shows significant advantages over existing classification models, effectively improving classification accuracy and efficiency.

    参考文献
    [1] Chen C, Yan JN, Wang LZ, et al. Classification of urban functional areas from remote sensing images and time-series user behavior data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 1207–1221.
    [2] Zhang B, Sun X, Gao LR, et al. Endmember extraction of hyperspectral remote sensing images based on the ant colony optimization (ACO) algorithm. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(7): 2635–2646.
    [3] Su HJ, Yao WJ, Wu ZY, et al. Kernel low-rank representation with elastic net for China coastal wetland land cover classification using GF-5 hyperspectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171: 238–252.
    [4] Yao J, Meng DY, Zhao Q, et al. Nonconvex-sparsity and nonlocal-smoothness-based blind hyperspectral unmixing. IEEE Transactions on Image Processing, 2019, 28(6): 2991–3006.
    [5] Zhao XD, Tao R, Li W, et al. Joint classification of hyperspectral and LiDAR data using hierarchical random walk and deep CNN architecture. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(10): 7355–7370.
    [6] Geng J, Deng XY, Ma XR, et al. Transfer learning for SAR image classification via deep joint distribution adaptation networks. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5377–5392.
    [7] Vali A, Comai S, Matteucci M. Deep learning for land use and land cover classification based on hyperspectral and multispectral Earth observation data: A review. Remote Sensing, 2020, 12(15): 2495.
    [8] Li Y, Zhang HK, Shen Q. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sensing, 2017, 9(1): 67.
    [9] 曹琼, 马爱龙, 钟燕飞, 等. 高光谱-LiDAR多级融合城区地表覆盖分类. 遥感学报, 2019, 23(5): 892–903.
    [10] Jahan F, Zhou J, Awrangjeb M, et al. Inverse coefficient of variation feature and multilevel fusion technique for hyperspectral and LiDAR data classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 367–381.
    [11] Dalponte M, Bruzzone L, Gianelle D. Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(5): 1416–1427.
    [12] 夏梦, 曹国, 汪光亚, 等. 结合深度学习与条件随机场的遥感图像分类. 中国图象图形学报, 2017, 22(9): 1289–1301.
    [13] Ni L, Gao LR, Li SS, et al. Edge-constrained Markov random field classification by integrating hyperspectral image with LiDAR data over urban areas. Journal of Applied Remote Sensing, 2014, 8(1): 085089.
    [14] 赵伍迪, 李山山, 李安, 等. 结合深度学习的高光谱与多源遥感数据融合分类. 遥感学报, 2021, 25(7): 1489–1502.
    [15] Wang XH, Feng YN, Song RX, et al. Multi-attentive hierarchical dense fusion net for fusion classification of hyperspectral and LiDAR data. Information Fusion, 2022, 82: 1–18.
    [16] Xu XD, Li W, Ran Q, et al. Multisource remote sensing data classification based on convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 937–949.
    [17] Hang RL, Li Z, Ghamisi P, et al. Classification of hyperspectral and LiDAR data using coupled CNNs. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 4939–4950.
    [18] Li CX, Hang RL, Rasti B. EMFNet: Enhanced multisource fusion network for land cover classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 4381–4389.
    [19] 刘伟权, 王程, 臧彧, 等. 基于遥感大数据的信息提取技术综述. 大数据, 2022, 8(2): 28–57.
    [20] Chen YS, Lin ZH, Zhao X, et al. Deep learning-based classification of hyperspectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2094–2107.
    [21] Hong DF, Gao LR, Hang RL, et al. Deep encoder-decoder networks for classification of hyperspectral and LiDAR data. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 5500205.
    [22] Zhang MM, Li W, Du Q, et al. Feature extraction for classification of hyperspectral and LiDAR data using patch-to-patch CNN. IEEE Transactions on Cybernetics, 2020, 50(1): 100–111.
    [23] 杭仁龙, 孙瑜, 刘青山. 模态间匹配学习的高光谱和激光雷达联合分类. 遥感学报, 2024, 28(1): 154–167.
    [24] Lu T, Ding KX, Fu W, et al. Coupled adversarial learning for fusion classification of hyperspectral and LiDAR data. Information Fusion, 2023, 93: 118–131.
    [25] Abbasi AN, He MY. Convolutional neural network with PCA and batch normalization for hyperspectral image classification. Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama: IEEE, 2019. 959–962. doi: 10.1109/IGARSS.2019.8899329.
    [26] Chen YS, Li CY, Ghamisi P, et al. Deep fusion of remote sensing data for accurate classification. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1253–1257.
    [27] Bachman P, Alsharif O, Precup D. Learning with pseudo-ensembles. Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2014. 3365–3373.
    [28] Lee DH. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. Proceedings of the 2013 International Conference on Machine Learning, Workshop on Challenges in Representation Learning. Atlanta: OpenReview.net, 2013. 896–901.
    [29] Debes C, Merentitis A, Heremans R, et al. Hyperspectral and LiDAR data fusion: Outcome of the 2013 GRSS data fusion contest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2405–2418.
    [30] Gader P, Zare A, Close R, et al. MUUFL Gulfport hyperspectral and lidar airborne data set. Gainesville: University of Florida, 2013. 570.
    [31] Paszke A, Gross S, Massa F, et al. PyTorch: An imperative style, high-performance deep learning library. Proceedings of the 33rd International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2019. 721.
    [32] Zhang MM, Li W, Tao R, et al. Information fusion for classification of hyperspectral and LiDAR data using IP-CNN. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5506812.
    [33] Lin JY, Gao F, Shi XC, et al. SS-MAE: Spatial–spectral masked autoencoder for multisource remote sensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5531614.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张力予.跨模态通道权重调整的半监督分类网络.计算机系统应用,2025,34(3):189-200

复制
分享
文章指标
  • 点击次数:48
  • 下载次数: 1018
  • HTML阅读次数: 9
  • 引用次数: 0
历史
  • 收稿日期:2024-08-02
  • 最后修改日期:2024-08-27
  • 在线发布日期: 2025-01-21
文章二维码
您是第10784803位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号