基于分组ConvLSTM和Transformer的双分支遥感高光谱图像超分辨率网络
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金青年项目(32301702); 山东省自然科学基金青年项目(ZR2021QC120)


Dual-branch Remote Sensing Hyperspectral Image Super-resolution Network Based on Grouped ConvLSTM and Transformer
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    遥感高光谱图像超分辨率(remote sensing hyperspectral image single super-resolution, HSISR)任务近年来已取得可观进展, 其中使用深度卷积神经网络(convolutional neural network, CNN)技术的方法得到广泛运用. 然而, 大多数基于CNN的超分辨模型往往会忽略遥感高光谱图像的光谱结构, 同时由于卷积网络受卷积核大小限制, 长距离的特征依赖关系被忽略, 进而影响了重建的精度. 为了解决这些问题, 本文提出了一个基于分组ConvLSTM和Transformer的双分支遥感高光谱图像超分辨率网络(dual-branch remote sensing hyperspectral image super-resolution network based on grouped ConvLSTM and Transformer, DGCTNet), 该方法结合了Transformer捕捉长距离依赖关系和卷积长短时记忆网络(ConvLSTM)对提取序列性特征的优势, 在提取空间特征的同时保持了光谱的有序性, 增强了重建图像的效果. 此外, DGCTNet还设计了边缘学习网络, 将边缘信息扩散到图像空间中. 同时为重新校准光谱响应, 加入提出的双组级通道注意力机制(dual-group level channel self-attention, DSA). 在Houston数据集上的实验表明, DGCTNet方法在定量评价指标和多种场景下的视觉质量上, 都优于当前最先进的对比模型.

    Abstract:

    Remote sensing hyperspectral image single super-resolution (HSISR) tasks have made considerable progress in recent years. Methods using deep convolutional neural network (CNN) technology are widely employed. However, most CNN-based super-resolution models tend to ignore the spectral structure of remote sensing hyperspectral images. Meanwhile, due to the limitation of convolutional networks by the size of convolutional kernels, long-distance feature dependencies are ignored, which in turn affects the reconstruction accuracy. To solve these problems, this study proposes adual-branch remote sensing hyperspectral image super-resolution network based on grouped ConvLSTM and Transformer (DGCTNet), which combines the advantages of Transformer in capturing long-distance dependencies and ConvLSTM in extracting sequential features. It enhances the reconstructed image effect by extracting spatial features while maintaining spectral orderliness. In addition, DGCTNet also designs an edge learning network to diffuse edge information into the image space. At the same time, to recalibrate the spectral response, the proposed dual-group level channel self-attention mechanism (DSA) is added. Experiments on the Houston dataset show that the proposed DGCTNet method outperforms the current state-of-the-art comparison models in terms of quantitative evaluation metrics and visual quality in a wide variety of scenarios.

    参考文献
    相似文献
    引证文献
引用本文

边太成,杨锦,朱习军.基于分组ConvLSTM和Transformer的双分支遥感高光谱图像超分辨率网络.计算机系统应用,,():1-11

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-20
  • 最后修改日期:2024-09-19
  • 录用日期:
  • 在线发布日期: 2025-01-16
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号