基于改进秃鹰搜索算法的聚合物驱油井组劈分
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(42002138); 黑龙江省自然科学基金(LH2022F008); 黑龙江省博士后专项(LBH-Q20077); 黑龙江省优秀青年教师基础研究支持计划(YQJH2023073)


Polymer Flooding Well Group Splitting Based on Improved Bald Eagle Search Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有聚合物用量劈分算法, 在处理不同区块井组时自适应性不足的问题, 本文提出基于改进秃鹰搜索算法的聚合物驱油井组劈分方法, 首先通过灰色关联度分析法获得初步劈分系数, 进而计算每个采油井的累计注入量与实际产液量的差值, 并设定合理阈值范围和约束条件; 其次通过引入Sobol序列和ICMIC映射、黄金正弦莱维飞行引导机制及非线性收敛因子和自适应惯性权重策略改进秃鹰搜索算法, 增强算法的搜索能力和收敛精度; 最后利用改进秃鹰搜索算法对某油田实际区块内井组劈分系数优化模型进行求解, 结果表明计算出的劈分注入量与实际产液量吻合度较高, 具有较好的劈分精度.

    Abstract:

    Given the insufficient adaptability of existing polymer dosage splitting algorithms when dealing with well groups in different blocks, this study proposes a polymer flooding well group splitting method based on an improved bald eagle search algorithm. Firstly, the preliminary splitting coefficients are obtained through grey correlation analysis. Then, the difference between the cumulative injection volume and the actual fluid production volume of each extraction well is calculated, and a reasonable threshold range and constraint conditions are set. Secondly, the bald eagle search algorithm is improved by introducing Sobol sequence and ICMIC mapping, golden sine Lévy flight guidance mechanism, nonlinear convergence factor, and adaptive inertia weighting strategy, which enhances the algorithm's searching capability and convergence accuracy. Finally, the improved bald eagle search algorithm is used to solve the optimization model of well group splitting coefficients in the actual block of an oilfield. The results show that the calculated splitting injection volume has a high degree of agreement with the actual fluid production volume and has good splitting accuracy.

    参考文献
    相似文献
    引证文献
引用本文

张强,陈诚,李青,薛冰.基于改进秃鹰搜索算法的聚合物驱油井组劈分.计算机系统应用,,():1-10

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-30
  • 最后修改日期:2024-09-03
  • 录用日期:
  • 在线发布日期: 2024-12-19
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号