模糊场景下行人与车辆检测算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Pedestrian and Vehicle Detection Algorithm in Blurred Scenarios
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对雾霾、雨雪等恶劣天气下拍摄到的图像退化模糊, 难以进行准确识别与检测的问题, 本文提出模糊场景下行人与车辆检测算法LiteBlurVisionNet (轻模糊视觉网络). 在主干网络部分使用GlobalContextEnhancer注意力改进轻量级 MobileNetV3模块, 减少了参数量, 使得模型在雾霾、雨雪等恶劣天气条件下图像处理效率更高. 颈部网络采用更为轻量化的Ghost模块和由GhostBottleneck模块改进的SpectralGhostUnit模块, 能够更有效地捕获全局上下文信息, 提高特征的区分度和表达能力, 有助于减少参数数量和计算复杂度, 从而提高网络处理速度和效率; 预测部分采用DIoU NMS基于非极大抑制方法进行最大局部搜索, 去除冗余的检测框, 提高检测算法在模糊场景下的准确性. 实验结果表明, LiteBlurVisionNet算法模型的参数量比RTDETR-ResNet50算法模型下降了96.8%, 比YOLOv8n算法模型下降了55.5%, LiteBlurVisionNet算法模型的计算量比Faster R-CNN算法模型下降了99.9%, 比YOLOv8n算法模型下降了57%, LiteBlurVisionNet算法模型的mAP0.5比IAL-YOLO算法模型提高了13.71%, 比YOLOv5s算法模型提高了2.4%, 这意味着模型在存储和计算方面更加高效, 尤其适用于资源受限的环境或移动端设备.

    Abstract:

    Aiming at degraded and blurred images captured under harsh weather conditions such as haze, rain, and snow, which make accurate recognition and detection challenging, this study proposes a pedestrian and vehicle detection algorithm, lightweight blur vision network (LiteBlurVisionNet), for blurred scenes. In the backbone network, the GlobalContextEnhancer attention-improved lightweight MobileNetV3 module is used, reducing the number of parameters and making the model more efficient in image processing under harsh weather conditions such as haze and rain. The neck network adopts a lighter Ghost module and the SpectralGhostUnit module improved from the GhostBottleneck module. These modules can more effectively capture global context information, improve the discrimination and expressive ability of features, help reduce the number of parameters and computational complexity, and thereby improve the network’s processing speed and efficiency. In the prediction part, DIoU NMS based on the non-maximum suppression method is used for maximum local search to remove redundant detection boxes and improve the accuracy of the detection algorithm in blurred scenes. Experimental results show that the parameter count of the LiteBlurVisionNet algorithm model is reduced by 96.8% compared to the RTDETR-ResNet50 algorithm model, and by 55.5% compared to the YOLOv8n algorithm model. The computational load of the LiteBlurVisionNet algorithm model is reduced by 99.9% compared to the Faster R-CNN algorithm model and by 57% compared to the YOLOv8n algorithm model. The mAP0.5 of the LiteBlurVisionNet algorithm model is improved by 13.71% compared to the IAL-YOLO algorithm model and by 2.4% compared to the YOLOv5s algorithm model. This means the model is more efficient in terms of storage and computation and is particularly suitable for resource-constrained environments or mobile devices.

    参考文献
    相似文献
    引证文献
引用本文

郑广海,张海宁,曲英伟.模糊场景下行人与车辆检测算法.计算机系统应用,,():1-9

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-08
  • 最后修改日期:2024-07-10
  • 录用日期:
  • 在线发布日期: 2024-12-19
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号