基于增强残差特征的孪生网络图像隐写分析
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广东省基础与应用基础研究基金 (2021A1515110673)


Siamese Network Image Steganalysis Based on Enhanced Residual Features
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    图像隐写分析旨在检测图像是否经过隐写术处理从而携带了秘密信息. 基于孪生网络的隐写分析算法通过计算待检测图像左右分区的不相似性以此判断图像是否携带秘密信息, 是目前深度学习图像隐写分析算法里面准确度较高的网络. 然而, 基于孪生网络的图像隐写分析算法仍然存在一些局限性. 首先, 孪生网络在预处理层和特征提取层中叠加的卷积块, 忽略了隐写信号从浅层传递到深层过程中容易丢失的问题. 其次, 现有的孪生网络使用的SRM滤波器仍然沿用其他网络使用的高通滤波器来抑制图像内容, 忽略了生成的残差图大小单一的问题. 为了解决以上问题, 本文提出了基于增强残差特征的孪生网络图像隐写分析方法. 本文方法设计了一种基于注意力的倒残差模块, 通过在预处理层和特征提取层的卷积块后添加基于注意力的倒残差模块, 重用图像特征, 引入注意力机制, 增强网络对图像纹理复杂区域的特征图赋予更多权重. 同时为了更好地抑制图像内容, 提出多尺度滤波器, 将残差类型调整为多个尺寸不同的卷积核进行操作, 丰富残差特征. 实验结果表明, 本文提出的基于注意力的倒残差模块和多尺度滤波器相较于现有方法分类效果更佳.

    Abstract:

    Image steganalysis aims to detect whether an image undergoes steganography processing and thus carries secret information. Steganalysis algorithm based on Siamese networks determines whether an image carries secret information by calculating the dissimilarity between the left and right partitions of the image to be detected. This approach currently boasts relatively high accuracy among deep learning image steganalysis algorithms. However, Siamese network-based image steganalysis algorithms still have certain limitations. First, the convolutional blocks stacked in the preprocessing and feature extraction layers of the Siamese network overlook the issue of steganographic signals easily being lost as they are transmitted from shallow to deep layers. Second, SRM filters used in existing Siamese networks still employ high-pass filters from other networks to suppress image content, ignoring single-sized generated residual maps. To address the above problems, this study proposes a Siamese network image steganalysis method based on enhanced residual features. The proposed method designs an attention-based inverted residual module. By adding the attention-based inverted residual module after the convolutional blocks in the preprocessing and feature extraction layers, it reuses image features, introduces an attention mechanism, and enables the network to assign more weights to feature maps of complex-textured image regions. Meanwhile, to better suppress image content, a multi-scale filter is proposed, adjusting the residual types to operate with convolutional kernels of different sizes, thereby enriching residual features. Experimental results show that the proposed attention-based inverted residual module and multi-scale filter provide better classification performance compared to existing methods.

    参考文献
    相似文献
    引证文献
引用本文

刘佳梅,苏海.基于增强残差特征的孪生网络图像隐写分析.计算机系统应用,,():1-12

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-18
  • 最后修改日期:2024-09-03
  • 录用日期:
  • 在线发布日期: 2024-11-28
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号