融合DeepE和对比学习的链路预测模型
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62171131); 福建省自然科学基金(2022J01398)


Link Prediction Model Integrating DeepE and Contrastive Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现有的知识图谱链路预测方法在学习语义信息的过程中大多只关注单个三元组中头实体h、关系r和尾实体t之间的语义关系, 没有考虑不同三元组中相关实体和实体关系之间的联系. 针对此问题, 本文提出了DeepE_CL模型. 首先, 通过DeepE模型学习相关三元组的语义信息和具有相同实体关系对的实体或具有相同实体的实体关系对的语义信息. 其次, 利用提取的相关三元组语义信息计算相应的评分函数和交叉熵损失, 并采用对比学习模型对提取的具有相同实体关系对的实体或具有相同实体的实体关系对的语义信息进行优化, 从而实现对相关三元组缺失信息的预测. 本文在4个常见的数据集上进行验证, 运用MRMRRHit@1和Hit@10这4个评价指标对所提方法和其他基线模型进行对比, 实验结果表明DeepE_CL模型在所有指标上都取得了最好的结果. 为了进一步验证模型的实用性, 本文还将模型应用到了1个真实的中成药数据集, 实验结果显示DeepE_CL模型比DeepE模型在MR指标上降低了18, 在MRRHit@1指标上分别提升了0.8%、1.1%, 在Hit@10指标上维持不变. 实验证明了引入对比学习模型的DeepE_CL模型在提升知识图谱链路预测性能方面的有效性.

    Abstract:

    Most of the existing knowledge graph link prediction methods focus only on the semantic relationships between a head entity h, a relationship r, and a tail entity t in a single triad in learning semantic information. They do not consider the links between related entities and entity relationships in different triads. To address this problem, this study proposes the DeepE_CL model. Firstly, the study uses the DeepE model to learn the semantic information of related triads and entities with the same entity relationship pairs or entity relationship pairs with the same entities. Secondly, the extracted semantic information of the related triads is used to calculate the corresponding scoring function and cross-entropy loss, and the extracted semantic information of entities with the same entity relationship pairs or entity relationship pairs with the same entities is optimized through the comparative learning model, so as to predict the missing information of the related triads. This paper validates the proposed method through four common datasets and compares the proposed method with other baseline models by applying four evaluation indicators, including MR, MRR, Hit@1, and Hit@10. The experimental results show that the DeepE_CL model achieves the best results in all indicators. To further validate the usefulness of the model, this study also applies the model to a real traditional Chinese medicine (TCM) dataset, and the experimental results show that compared with the DeepE model, the DeepE_CL model reduces the MR indicators by 18, and improves the MRR, Hit@1 indicators by 0.8%, 1.1%, and the Hit@10 indicators remain unchanged. The experiments demonstrate that the DeepE_CL model, introducing a comparative learning model, is very effective in improving the performance of knowledge graph link prediction.

    参考文献
    相似文献
    引证文献
引用本文

翁慧敏,郭躬德,林世水.融合DeepE和对比学习的链路预测模型.计算机系统应用,2025,34(2):206-215

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-15
  • 最后修改日期:2024-08-13
  • 录用日期:
  • 在线发布日期: 2024-12-16
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号