基于广义高效层聚合网络和共享卷积的卡通角色面部检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

河北省自然科学基金面上项目(F2019210253)


Cartoon Face Detection Based on Generalized Efficient Layer Aggregation Network and Shared Convolution
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    卡通角色面部检测是一项比人脸检测更具挑战性的任务, 它涉及许多困难的场景. 针对卡通角色面部间存在巨大差异的特点, 本文提出了一种卡通角色面部检测算法, 命名为YOLO-DEL. 首先, 基于GELAN融合BDD设计了DBBNCSPELAN模块, 旨在减小模型体积的同时增强检测性能. 接下来, 引入一种称为ELA的多尺度注意机制, 用于改善SPPF结构, 增强主干模型的特征提取能力. 最后, 设计了新的共享卷积检测头, 使网络更轻便. 同时也用Shape-IoU代替原CIoU损失函数, 提升模型的收敛效率. 在iCartoonFace数据集上进行实验, 通过消融实验验证得到的模型, 并将其与YOLOv3-tiny、YOLOv5n和YOLOv6等模型进行比较. 改进模型YOLO-DEL的mAP达到90.3%, 比YOLOv8提高了1.2%, 参数量为1.69M, 与YOLOv8相比参数量降低47%, GFLOPs 降低44%. 实验表明, 本文方法能有效提高卡通角色面部的检测精度, 同时缩小网络模型的大小, 验证本文方法的有效性.

    Abstract:

    Cartoon character face detection is more challenging than face detection because it involves many difficult scenarios. Given the huge differences between different cartoon characters’ faces, this study proposes a cartoon character face detection algorithm, named YOLOv8-DEL. Firstly, the DBBNCSPELAN module is designed based on GELAN fusion BDD to reduce model size and enhance detection performance. Next, a multi-scale attention mechanism called ELA is introduced to improve the SPPF structure and enhance the feature extraction ability of the backbone model. Finally, a new detection head for shared convolution is designed to make the network lighter. At the same time, the original CIoU loss function is replaced by Shape-IoU to improve the convergence efficiency of the model. Experiments are carried out on the iCartoonFace dataset, and ablation experiments are carried out to verify the proposed model. Besides, the proposed model is compared with the YOLOv3-tiny, YOLOv5n, and YOLOv6 models. The mAP of the improved model YOLO-DEL reaches 90.3%, 1.2% higher than that of YOLOv8. The parameters are 1.69M, 47% lower than YOLOv8 and 44% lower than GFLOPs. Experimental results show that the proposed method effectively improves cartoon character face detection precision while compressing the network model’s size. Thus, the proposed method has proved to be effective.

    参考文献
    相似文献
    引证文献
引用本文

闫博文,刘永泽,夏海东,宋晓强.基于广义高效层聚合网络和共享卷积的卡通角色面部检测.计算机系统应用,,():1-12

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-17
  • 最后修改日期:2024-07-10
  • 录用日期:
  • 在线发布日期: 2024-12-13
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号