基于TD3的无人机计算卸载算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

咸阳市科技局重点研发计划(2023ZDYF-NY-0019); 西安市碑林区科技计划(GX2137)


UAV Computation Offloading Algorithm Based on TD3
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    无人机(unmanned aerial vehicle, UAV)搭载边缘服务器构成移动边缘服务器, 可以在一些基站难以部署的场景下为用户设备(user equipment, UE)提供计算服务, 借助深度强化学习对智能体进行训练, 能够在连续复杂的状态空间中制定合理的卸载决策, 将用户产生的计算密集型任务部分卸载至边缘服务器处执行, 提高系统的续航和响应时间, 但目前的深度强化学习算法所使用的全连接神经网络无法较好地处理UAV辅助移动边缘计算(mobile edge computing, MEC)场景下的时间序列数据, 算法的智能体训练效率低, 决策性能差, 针对上述问题, 本文以最小化UAV辅助MEC系统总时延为目标, 提出了一种基于长短期记忆网络的双延迟深度确定性策略梯度算法(twin delayed deep deterministic policy gradient algorithm based on long short term memory, LSTM-TD3), 利用LSTM改进TD3算法的Actor-Critic网络结构, 将网络划分成3部分: 包含LSTM的记忆提取单元, 当前特征提取单元, 以及感知整合单元; 并在改进了经验池中的样本数据, 定义了历史数据, 使记忆提取单元能够得到更好的训练效果. 仿真结果表明, 与AC算法、DQN算法和DDPG算法相比, LSTM-TD3算法在以系统最小总时延为目标对卸载策略进行优化时具有最好的性能.

    Abstract:

    Unmanned aerial vehicle (UAV) is equipped with an edge server to constitute a mobile edge server. It can provide computing services for user equipment (UE) in some scenarios where base stations are difficult to deploy. With the help of deep reinforcement learning to train the intelligent body, it can formulate reasonable offloading decisions in a continuous and complex state space. It can also offload partial computing-intensive missions produced by users to edge servers for execution, thus improving the working and responding time of the system. However, at the moment, the fully connected neural networks used by the deep reinforcement learning algorithm are unable to handle the time-series data in the scenarios of UAV-assisted mobile edge computing (MEC). In addition, the training efficiency of the algorithm is low, and the decision-making performance is poor. To address the above problems, this study proposes a twin delayed deep deterministic policy gradient algorithm based on long short term memory (LSTM-TD3), using LSTM to improve the Actor-Critic network structure of the TD3 algorithm. In this way, the network is divided into three parts: the memory extraction unit containing LSTM, the current feature extraction unit, and the perceptual integration unit. Besides, the sample data in the experience pool are improved, and the historical data are defined, which provides the memory extraction unit with a better training effect. Simulation results show that, compared with the AC algorithm, the DQN algorithm, and the DDPG algorithm, the LSTM-TD3 algorithm has the best performance when optimizing the offloading strategy with the minimum total delay of the system as the target.

    参考文献
    相似文献
    引证文献
引用本文

徐飞,赵前奔,杨雪.基于TD3的无人机计算卸载算法.计算机系统应用,,():1-12

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-25
  • 最后修改日期:2024-08-20
  • 录用日期:
  • 在线发布日期: 2024-11-15
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号