摘要:肺炎是一种常见的呼吸系统疾病, 早期诊断对于有效治疗至关重要. 本研究提出了卷积神经网络(CNN)和Transformer结合的CTFNet混合模型, 旨在实现高效准确的肺炎辅助诊断. 该模型融合了卷积分词器和聚焦线性注意力机制. 卷积分词器通过卷积操作实现更紧凑的特征提取, 并保留图像的关键局部特征降低计算复杂度, 提高模型的表达能力. 聚焦线性注意力机制缓解了Transformer的计算需求, 优化了注意力框架, 大幅提升了模型性能. 在Chest X-ray Images数据集上, CTFNet在肺炎分类任务中表现出色, 达到了99.32%的准确率、99.55%的精确率、99.55%的召回率和99.55%的F1值. 较好的性能凸显了该模型在临床应用中的潜力. 为了评估CTFNet的泛化能力, 我们将其应用于COVID-19 Radiography Database数据集. 在该数据集中, CTFNet被用于多个二分类任务均达到98%以上的准确率. 这些结果表明, CTFNet在肺炎图像分类的各种任务中具有较好的泛化能力和可靠性.