增强小目标检测的建筑工地安全装备检测
作者:
基金项目:

国家自然科学基金青年基金(51904144); 辽宁工程技术大学鄂尔多斯研究院校地科技合作培育项目(YJY-XD-2023-014, YJY-XD-2024-040)


Construction Site Safety Equipment Detection with Enhanced Small Target Detection
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    YOLOv8n算法在面对背景繁杂、目标密集、像素点小的情况下, 表现出识别精度欠佳、目标漏检及误识别的问题. 针对上述问题, 提出一种LNCE-YOLOv8n安全装备佩戴检测算法. 包括提出线性多尺度融合注意力LMSFA (linear multi-scale fusion attention)机制, 自适应聚焦关键特征, 提升对小目标信息提取的能力且减少计算. 提出C2f_NewNet (C2f_New network)结构, 通过有效的并行化设计, 保持高性能且减少深度. 结合轻量级通用上采样算子CARAFE (content-aware reassembly of feature), 实现跨尺度的高效特征融合与传播, 在大的感受野内聚合上下文信息. 基于SIoU (symmetric intersection over union)损失函数提出ESIoU (enhanced symmetric intersection over union), 提升模型在复杂环境中的适应性和精度. 实验采用safety equipment数据集进行训练测试, 结果表明LNCE-YOLOv8n算法相比YOLOv8n算法, 精度提升了5.1%, mAP50提升了2.7%, mAP50-95提升了3.4%, 有效提高建筑工地复杂场景的工人安全装备佩戴检测精度.

    Abstract:

    The YOLOv8n algorithm exhibits suboptimal performance when dealing with complex backgrounds, dense targets, and small-sized objects with limited pixel information, leading to reduced precision, missed detection, and misclassification. To address these issues, this study proposes an algorithm, LNCE-YOLOv8n, for safety equipment detection. This algorithm includes a linear multi-scale fusion attention (LMSFA) mechanism, which adaptively focuses on key features to improve the extraction of information from small targets while reducing computational loads. An architecture called C2f_New networks (C2f_NewNet) is also introduced, which maintains high performance and reduces depth through an effective parallelization design. Combined with a lightweight universal up-sampling operator, content-aware reassembly of features (CARAFE), the proposed algorithm realizes efficient cross-scale feature fusion and propagation and aggregates contextual information within a large receptive field. Based on the SIoU (symmetric intersection over union) loss function, this study proposed enhanced SIoU (ESIoU) to improve the adaptability and accuracy of the model in complex environments. Tested on a safety equipment dataset, LNCE-YOLOv8n outperforms YOLOv8n, exhibiting a 5.1% increase in accuracy, a 2.7% rise in mAP50, and a 3.4% boost in mAP50-95, significantly enhancing the detection accuracy of safety equipment for workers in complex construction conditions.

    参考文献
    [1] Kelm A, Laußat L, Meins-Becker A, et al. Mobile passive radio frequency identification (RFID) portal for automated and rapid control of personal protective equipment (PPE) on construction sites. Automation in Construction, 2013, 36: 38–52.
    [2] Mohapatra S, Swarnkar T, Das J. Deep convolutional neural network in medical image processing. In: Balas VE, Mishra BK, Kumar R, eds. Handbook of Deep Learning in Biomedical Engineering: Techniques and Applications. London: Academic Press, 2021. 25–60.
    [3] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 779–788.
    [4] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 6517–6525.
    [5] Bochkovskiy A, Wang CY, Liao HYM. YOLOv4: Optimal speed and accuracy of object detection. arXiv:2004.10934, 2020.
    [6] Lin TY, Dollár P, Girshick R, et al. Feature pyramid networks for object detection. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 936–944.
    [7] Liu S, Qi L, Qin HF, et al. Path aggregation network for instance segmentation. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 8759–8768.
    [8] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector. Proceedings of the 14th European Conference on Computer Vision (ECCV 2016). Amsterdam: Springer, 2016. 21–37.
    [9] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014. 580–587.
    [10] Girshick R. Fast R-CNN. Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015. 1440–1448.
    [11] 王凤随, 王启胜, 陈金刚, 等. 基于注意力机制和Soft-NMS的改进Faster R-CNN目标检测算法. 激光与光电子学进展, 2021, 58(24): 2420001.
    [12] He KM, Gkioxari G, Dollár P, et al. Mask R-CNN. Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017. 2980–2988.
    [13] Ge Z, Liu ST, Wang F, et al. Yolox: Exceeding YOLO series in 2021. arXiv:2107.08430, 2021.
    [14] 李佐龙, 王帮海, 卢增. 多尺度特征融合重建的行人检测方法. 计算机工程与应用, 2021, 57(4): 176–182.
    [15] Gevorgyan Z. SIoU loss: More powerful learning for bounding box regression. arXiv:2205.12740, 2022.
    [16] 童康, 吴一全. 基于深度学习的小目标检测基准研究进展. 电子学报, 2024, 52(3): 1016–1040.
    [17] Hu J, Shen L, Sun G. Squeeze-and-excitation networks. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake: IEEE, 2018. 7132–7141.
    [18] Chen JR, Kao SH, He H, et al. Run, don’t walk: Chasing higher FLOPs for faster neural networks. Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023. 12021–12031.
    [19] Abdellatef E, Omran EM, Soliman RF, et al. Fusion of deep-learned and hand-crafted features for cancelable recognition systems. Soft Computing, 2020, 24(20): 15189–15208.
    [20] Zhang LL, Lin L, Liang XD, et al. Is faster R-CNN doing well for pedestrian detection? Proceedings of the 14th European Conference on Computer Vision (ECCV 2016). Amsterdam: Springer, 2016. 443–457.
    [21] 李钟华, 林初俊, 朱恒亮, 等. 基于结构感知和全局上下文信息的小目标检测. 计算机工程与应用, 2024, 60(9): 292–298.
    [22] Ling Q, Isa NAM, Asaari MSM. Precise detection for dense PCB components based on Modified YOLOv8. IEEE Access, 2023, 11: 116545–116560.
    [23] Chen YL, Li XX, He ZX, et al. IoU_MDA: An occluded object detection algorithm based on fuzzy sample anchor box IoU matching degree deviation aware. IEEE Access, 2024, 12: 47630–47645.
    [24] Ahmed L, Iqbal MM, Aldabbas H, et al. Images data practices for semantic segmentation of breast cancer using deep neural network. Journal of Ambient Intelligence and Humanized Computing, 2023, 14(11): 15227–15243.
    [25] 江泽涛, 李慧, 雷晓春, 等. 一种基于SAM-MSFF网络的低照度目标检测方法. 电子学报, 2024, 52(1): 81–93.
    [26] Li YX, Hou QB, Zheng ZH, et al. Large selective kernel network for remote sensing object detection. Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023. 16794–16805.
    [27] Ding XH, Zhang XY, Ma NN, et al. RepVGG: Making VGG-style convnets great again. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. 13733–13742.
    [28] Elfwing S, Uchibe E, Doya K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Networks, 2018, 107: 3–11.
    [29] Wang J, Chen K, Xu R, et al. CARAFE: Content-aware reassembly of features. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019. 3007–3016.
    [30] Zhao ZQ, Zheng P, Xu ST, et al. Object detection with deep learning: A review. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(11): 3212–3232.
    [31] Paszke A, Gross S, Massa F, et al. PyTorch: An imperative style, high-performance deep learning library. Proceedings of the 33rd International Conference on Neural Information Pro-Cessing Systems. Vancouver: Curran Associates Inc., 2019. 8026–8037.
    [32] Sanders J, Kandrot E. CUDA by example: An introduction to general-purpose GPU programming. Boston: Addison-Wesley Professional, 2010.
    [33] Atapattu S, Tellambura C, Jiang H. Analysis of area under the ROC curve of energy detection. IEEE Transactions on Wireless Communications, 2010, 9(3): 1216–1225.
    [34] Düntsch I, Gediga G. Confusion matrices and rough set data analysis. Journal of Physics: Conference Series, 2019, 1229: 012055.
    [35] Merz CJ. Using correspondence analysis to combine classifiers. Machine Learning, 1999, 36: 33–58.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吕明海,王昱博,吕伏,冯永安.增强小目标检测的建筑工地安全装备检测.计算机系统应用,2025,34(2):122-134

复制
分享
文章指标
  • 点击次数:453
  • 下载次数: 384
  • HTML阅读次数: 65
  • 引用次数: 0
历史
  • 收稿日期:2024-06-29
  • 最后修改日期:2024-07-25
  • 在线发布日期: 2024-12-16
文章二维码
您是第11318801位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号