TSEncoder: 基于SAVMD和多源数据融合的故障分类
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国防基础科研项目(JCKY2022605C006)


TSEncoder: Fault Classification Based on SAVMD and Multi-source Data Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对实际运行机械设备信号易受噪声干扰导致故障特征难以准确提取, 以及设备单一位置信息无法全面反映运行状态的问题, 本研究提出了一种改进的信号自适应分解与多源数据融合的时空故障分类方法. 首先, 提出了一种改进的信号自适应分解算法SAVMD (signal adaptive variational mode decomposition), 并构建加权峭度稀疏度指标WKS (weighted kurtosis sparsity)筛选出富含特征信息的IMF (intrinsic mode function)分量, 以实现信号重构. 其次, 将不同位置传感器的多源数据进行融合, 并以周期性采样得到的数据集作为模型的输入. 最后, 构建了一个时空故障分类模型来处理多源数据, 通过改进的稀疏自注意力机制降低噪声干扰, 并利用双编码器机制实现对时间步长和空间通道信息的有效处理. 在3个公开的机械设备故障数据集上进行实验, 平均准确率分别达到了99.1%、98.5%和99.4%. 与其他故障分类方法相比表现更好, 具有良好的自适应性和鲁棒性, 为机械设备的故障诊断提供了一种可行的方法.

    Abstract:

    Aiming at the problems that mechanical equipment signals in actual operation are susceptible to noise interference, making it difficult to accurately extract fault features, and that the information from a single position of the equipment cannot fully reflect operational status, this study proposes an improved spatio-temporal fault classification method of signal adaptive decomposition and multi-source data fusion. Firstly, an improved signal adaptive decomposition algorithm named signal adaptive variational mode decomposition (SAVMD) is proposed, and a weighted kurtosis sparsity index named weighted kurtosis sparsity (WKS) is constructed to filter out intrinsic mode function (IMF) components rich in feature information for signal reconstruction. Secondly, multi-source data from different position sensors are fused, and the data set obtained by periodic sampling is used as the input of the model. Finally, a spatio-temporal fault classification model is built to process multi-source data, which reduces noise interference through an improved sparse self-attention mechanism and effectively processes time step and spatial channel information by using a dual-encoder mechanism. Experiments on three public mechanical equipment fault datasets achieve average accuracy rates of 99.1%, 98.5%, and 99.4% respectively. Compared with other fault classification methods, it has better performance, good adaptability and robustness, and provides a feasible method for fault diagnosis of mechanical equipment.

    参考文献
    相似文献
    引证文献
引用本文

季龙炳,周宇,钱巨. TSEncoder: 基于SAVMD和多源数据融合的故障分类.计算机系统应用,2025,34(1):223-235

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-18
  • 最后修改日期:2024-07-10
  • 录用日期:
  • 在线发布日期: 2024-11-15
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号