基于轻量化YOLOv8模型的苹果快速识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

科技创新特区计划 (20-163-14-LZ-001-004-01)


Fast Apple Recognition Based on Lightweight YOLOv8 Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对自然果园环境下苹果果实的识别, 本文提出了一种改进YOLOv8n模型的轻量化苹果检测算法. 首先, 通过使用DSConv和FEM特征提取模块的组合来替换主干网络中的部分常规卷积进行轻量化改进, 缩减卷积过程中的浮点数和计算量; 为了在轻量化过程中保持性能, 在特征处理的过程中, 引入结构化状态空间模型构建CBAMamba模块, 使用Mamba结构高效处理特征; 此后将检测头处的卷积替换为RepConv, 并减小卷积层; 最后, 更改边界框损失函数为动态非单调聚焦机制WIoU, 提高模型收敛速度, 进一步提升模型检测性能. 实验表明, 在公开数据集上, 本文提出的 YOLOv8改进算法比原始YOLOv8n算法分别提升1.6%的mAP@0.5和1.2%的mAP@0.5:0.95, 与此同时提升了8.0%的FPS并降低了13.3%的模型参数量, 轻量化的设计使之在机器人和嵌入式系统部署领域具有较强的实用性.

    Abstract:

    This study proposes a lightweight apple detection algorithm based on an improved YOLOv8n model for apple fruit recognition in natural orchard environments. Firstly, the study uses a combination of DSConv and FEM feature extraction modules to replace some regular convolutions in the backbone network for lightweight improvements. In this way, the floating-point numbers and computational quantity during the convolution process can be reduced. To maintain performance during the lightweight process, a structured state space model is introduced to construct the CBAMamba module, which efficiently processes features through the Mamba structure, during the feature processing procedure. Subsequently, the convolutions at the detecting head are replaced with RepConv and the convolution layer is reduced. Finally, the bounding box loss function is changed to the dynamic non-monotonic focusing mechanism WIoU to accelerate model convergence and further enhance model detection performance. The experiments show that, on the public dataset, the improved YOLOv8 algorithm outperforms the original YOLOv8n algorithm by 1.6% in mAP@0.5 and 1.2% in mAP@0.5:0.95. Meanwhile, it also increases FPS by 8.0% and reduces model parameters by 13.3%. The lightweight design makes it highly practical in robotics and embedded system deployment fields.

    参考文献
    相似文献
    引证文献
引用本文

聂忠强,朱明.基于轻量化YOLOv8模型的苹果快速识别.计算机系统应用,2025,34(1):200-210

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-30
  • 最后修改日期:2024-07-10
  • 录用日期:
  • 在线发布日期: 2024-11-15
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号