摘要:针对自然果园环境下苹果果实的识别, 本文提出了一种改进YOLOv8n模型的轻量化苹果检测算法. 首先, 通过使用DSConv和FEM特征提取模块的组合来替换主干网络中的部分常规卷积进行轻量化改进, 缩减卷积过程中的浮点数和计算量; 为了在轻量化过程中保持性能, 在特征处理的过程中, 引入结构化状态空间模型构建CBAMamba模块, 使用Mamba结构高效处理特征; 此后将检测头处的卷积替换为RepConv, 并减小卷积层; 最后, 更改边界框损失函数为动态非单调聚焦机制WIoU, 提高模型收敛速度, 进一步提升模型检测性能. 实验表明, 在公开数据集上, 本文提出的 YOLOv8改进算法比原始YOLOv8n算法分别提升1.6%的mAP@0.5和1.2%的mAP@0.5:0.95, 与此同时提升了8.0%的FPS并降低了13.3%的模型参数量, 轻量化的设计使之在机器人和嵌入式系统部署领域具有较强的实用性.