无人机辅助MEC中的依赖性任务卸载
作者:
基金项目:

重庆市自然科学基金创新发展联合基金(中国星网) (CSTB2023NSCQ-LZX0114); 重庆市自然科学基金面上项目 (cstc2021jcyj-msxmX0454)


Dependent Task Offloading in Mobile Edge Computing Assisted by Unmanned Aerial Vehicle
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在任务计算密集型和延迟敏感型的场景下, 无人机辅助的移动边缘计算由于其高机动性和放置成本低的特点而被广泛研究. 然而, 无人机的能耗限制导致其无法长时间工作并且卸载任务内的不同模块往往存在着依赖关系. 针对这种情况, 以有向无环图(direct acyclic graph, DAG)为基础对任务内部模块的依赖关系进行建模, 综合考虑系统时延和能耗的影响, 以最小化系统成本为优化目标得到最优的卸载策略. 为了解决这一优化问题, 提出了一种基于亚群、高斯变异和反向学习的二进制灰狼优化算法(binary grey wolf optimization algorithm based on subpopulation, Gaussian mutation, and reverse learning, BGWOSGR). 仿真结果表明, 所提出算法计算出的系统成本比其他4种对比方法分别降低了约19%、27%、16%、13%, 并且收敛速度更快.

    Abstract:

    In computation-intensive and latency-sensitive tasks, unmanned aerial vehicle (UAV)-assisted mobile edge computing has been extensively studied due to its high mobility and low deployment costs. However, the energy consumption of UAVs limits their ability to work for extended periods, and there are often dependencies among different modules within offloading tasks. To address these issues, directed acyclic graph (DAG) is utilized to model the dependencies among internal modules of tasks. Considering the impacts of system latency and energy consumption, an optimal offloading strategy is derived to minimize system costs. To achieve optimization, a binary grey wolf optimization algorithm based on subpopulation, Gaussian mutation, and reverse learning (BGWOSGR) is proposed. Simulation results show that the proposed algorithm reduces system costs by around 19%, 27%, 16%, and 13% compared to four other methods, with a faster convergence speed.

    参考文献
    [1] Ji TX, Wan XL, Guan XJ, et al. Towards optimal application offloading in heterogeneous edge-cloud computing. IEEE Transactions on Computers, 2023, 72(11): 3259–3272.
    [2] Huang D, Wang P, Niyato D. A dynamic offloading algorithm for mobile computing. IEEE Transactions on Wireless Communications, 2012, 11(6): 1991–1995.
    [3] Zhang C, Zhang LY, Zhu LP, et al. 3D deployment of multiple UAV-mounted base stations for UAV communications. IEEE Transactions on Communications, 2021, 69(4): 2473–2488.
    [4] Yuan XW, Xie ZD, Tan X. Computation offloading in UAV-enabled edge computing: A stackelberg game approach. Sensors, 2022, 22(10): 3854.
    [5] Hosny KM, Awad AI, Khashaba MM, et al. Optimized multi-user dependent tasks offloading in edge-cloud computing using refined whale optimization algorithm. IEEE Transactions on Sustainable Computing, 2024, 9(1): 14–30.
    [6] Dhingan D, Ghosh S, Naik BB, et al. Energy and delay efficient partial offloading for UAV-assisted MEC systems using differential evolution algorithm. Proceedings of the 3rd International Conference on Secure Cyber Computing and Communication (ICSCCC). Jalandhar: IEEE, 2023. 415–420.
    [7] Yan J, Bi SZ, Zhang YJ, et al. Optimal task offloading and resource allocation in mobile-edge computing with inter-user task dependency. IEEE Transactions on Wireless Communications, 2020, 19(1): 235–250.
    [8] Yuan Y, Su W. A game theory-based strategy for allocating and offloading computing resources in 5G networks. Proceedings of the 2023 International Conference on Networking and Network Applications (NaNA). Qingdao: IEEE, 2023. 92–97.
    [9] Lv XY, Du HW, Ye Q. TBTOA: A DAG-based task offloading scheme for mobile edge computing. Proceedings of the 2022 IEEE International Conference on Communications. Seoul: IEEE, 2022. 4607–4612.
    [10] Li QY, Peng B, Li Q, et al. A latency-optimal task offloading scheme using genetic algorithm for DAG applications in edge computing. Proceedings of the 8th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA). Chengdu: IEEE, 2023. 344–348.
    [11] Bai ZY, Lin YF, Cao Y, et al. Delay-aware cooperative task offloading for multi-UAV enabled edge-cloud computing. IEEE Transactions on Mobile Computing, 2024, 23(2): 1034–1049.
    [12] Fan YN, Zhai LB, Wang H. Cost-efficient dependent task offloading for multiusers. IEEE Access, 2019, 7: 115843–115856.
    [13] Zhao M, Li XH, Sun C, et al. Dependency-aware hybrid task offloading in mobile edge computing networks. Proceedings of the 27th IEEE International Conference on Parallel and Distributed Systems (ICPADS). Beijing: IEEE, 2021. 225–232.
    [14] Xu L, Qian KN, Cai MK, et al. Design of task offloading algorithm for mobile edge computing network based on UAV. Proceedings of the 4th International Conference on Neural Networks, Information and Communication Engineering (NNICE). Guangzhou: IEEE, 2024. 1048–1052.
    [15] Zhou H, Wang ZN, Min GY, et al. UAV-aided computation offloading in mobile-edge computing networks: A stackelberg game approach. IEEE Internet of Things Journal, 2023, 10(8): 6622–6633.
    [16] Wang H, Zhang HJ, Liu XN, et al. Joint UAV placement optimization, resource allocation, and computation offloading for THz band: A DRL approach. IEEE Transactions on Wireless Communications, 2023, 22(7): 4890–4900.
    [17] Bian YW, Sun Y, Zhai MD, et al. Dependency-aware task scheduling and offloading scheme based on graph neural network for MEC-assisted network. Proceedings of the 2023 IEEE/CIC International Conference on Communications in China (ICCC Workshops). Dalian: IEEE, 2023. 1–6.
    [18] Xiang K, He YJ. UAV-assisted MEC system considering UAV trajectory and task offloading strategy. Proceedings of the 2023 IEEE International Conference on Communications. Rome: IEEE, 2023. 4677–4682.
    [19] Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Advances in Engineering Software, 2014, 69: 46–61.
    [20] Liang JJ, Suganthan PN. Dynamic multi-swarm particle swarm optimizer. Proceedings of the 2005 IEEE Swarm Intelligence Symposium. Pasadena: IEEE, 2005. 124–129.
    [21] Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67–82.
    [22] Xu ZD, Su YB, Yang F, et al. A whale optimization algorithm with distributed collaboration and reverse learning ability. Computers, Materials & Continua, 2023, 75(3): 5965–5986.
    [23] Singh S, Ho Kim D. Profit optimization for mobile edge computing using genetic algorithm. Proceedings of the 2021 IEEE Region 10 Symposium (TENSYMP). Jeju: IEEE, 2021. 1–6.
    [24] Dai WF. Joint task offloading, resource allocation and data caching in MEC-assisted vehicular network. Proceedings of the 4th International Conference on Computer Engineering and Application (ICCEA). Hangzhou: IEEE, 2023. 70–76.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李贵勇,廖福建,田旭.无人机辅助MEC中的依赖性任务卸载.计算机系统应用,2025,34(2):264-271

复制
分享
文章指标
  • 点击次数:60
  • 下载次数: 330
  • HTML阅读次数: 58
  • 引用次数: 0
历史
  • 收稿日期:2024-07-05
  • 最后修改日期:2024-07-25
  • 在线发布日期: 2024-12-06
文章二维码
您是第11198011位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号