基于多重蒸馏与Transformer的遥感图像超分辨率重建
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(41975183)


Remote Sensing Image Super-resolution Reconstruction Based on Multi-distillation and Transformer
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现有的基于卷积神经网络的超分辨率重建方法由于感受野限制, 难以充分利用遥感图像丰富的上下文信息和自相关性, 导致重建效果不佳. 针对该问题, 本文提出了一种基于多重蒸馏与Transformer的遥感图像超分辨率(remote sensing image super-resolution based on multi-distillation and Transformer, MDT)重建方法. 首先结合多重蒸馏和双注意力机制, 逐步提取低分辨率图像中的多尺度特征, 以减少特征丢失. 接着, 构建一种卷积调制Transformer来提取图像的全局信息, 恢复更多复杂的纹理细节, 从而提升重建图像的视觉效果. 最后, 在上采样过程中添加全局残差路径, 提高特征在网络中的传播效率, 有效减少了图像的失真与伪影问题. 在AID和UCMerced两个数据集上的进行实验, 结果表明, 本文方法在放大至4倍超分辨率任务上的峰值信噪比和结构相似度分别最高达到了29.10 dB和0.7807, 重建图像质量明显提高, 并且在细节保留方面达到了更好的视觉效果.

    Abstract:

    Existing super-resolution reconstruction methods based on convolutional neural networks are limited by their receptive fields, which makes it difficult to fully utilize the rich contextual information and auto-correlation in remote sensing images, resulting in suboptimal reconstruction performance. To address this issue, this study proposes a novel network, termed MDT, a remote sensing image super-resolution rebuilding method based on multi-distillation and Transformer. Firstly, the network combines multiple distillations with a dual attention mechanism to progressively extract multi-scale features from low-resolution images, thereby reducing feature loss. Next, a convolutional modulation-based Transformer is constructed to capture global information in the images, recovering more complex texture details and enhancing the visual quality of the reconstructed images. Finally, a global residual path is added during upsampling to improve the propagation efficiency of features within the network, effectively reducing image distortion and artifacts. Experiments conducted on the AID and UCMerced datasets demonstrate that the proposed method achieves a peak signal-to-noise ratio (PSNR) and a peak structural similarity index (SSIM) of 29.10 dB and 0.7807, respectively, on ×4 super-resolution tasks. The quality of the reconstructed images is significantly improved, with better visual effects in terms of detail preservation.

    参考文献
    相似文献
    引证文献
引用本文

王军,陈莹莹,程勇.基于多重蒸馏与Transformer的遥感图像超分辨率重建.计算机系统应用,,():1-12

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-02
  • 最后修改日期:2024-07-25
  • 录用日期:
  • 在线发布日期: 2024-12-06
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号