面向事故报告与指标项关联挖掘的根原因分析
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山东省自然科学基金(ZR2021MF092); 山东省重点研发计划(2018GGX101052)


Root Cause Analysis Based on Association Mining Between Accident Report and Indicator
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为充分挖掘专家历史事故根原因分析经验, 提升事故根原因分析的准确性与全面性, 减少化工安全事故发生, 本文提出一种基于历史事故报告与根原因指标体系关联挖掘的分析方法. 通过构建事故报告与指标体系的关联矩阵, 采用预训练模型对事故文本和指标项文本进行表征, 基于注意力机制融合二级和三级指标项的信息, 最后运用图卷积神经网络进行事故根原因分析. 通过在1351份样本上进行验证, 实验结果表明: 该方法显著提高了根原因预测准确性, 能够有效利用专家历史分析经验辅助当前事故分析, 并揭示历史事故分析不完整的问题. 同时, 该方法也能通过不完整的事故描述准确挖掘事故根原因, 该方法的应用将提升事故预防和安全生产风险管理的水平.

    Abstract:

    This study proposes an analysis method based on association mining between historical accident reports and a root cause index system to fully leverage experts’ experience in root cause analysis of past accidents and enhance the accuracy and comprehensiveness of such analysis, thereby reducing chemical safety incidents. By constructing an association matrix between accident reports and the index system, this method utilizes a pre-trained model to represent accident and index texts. It integrates secondary and tertiary index information based on an attention mechanism and finally employs a graph convolutional neural network for root cause analysis. Validation on a dataset of 1351 samples demonstrates that this method significantly improves the accuracy of root cause prediction, effectively utilizing expert analysis of historical accidents to analyze current accidents and uncover the limitations in previous accident analysis. Additionally, this method accurately identifies the root causes of accidents even with incomplete incident descriptions. The application of this method will enhance accident prevention and risk management in occupational safety.

    参考文献
    相似文献
    引证文献
引用本文

陈鹏运,房敏营,侯孝波,杜军威.面向事故报告与指标项关联挖掘的根原因分析.计算机系统应用,2025,34(2):272-280

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-22
  • 最后修改日期:2024-07-18
  • 录用日期:
  • 在线发布日期: 2024-12-16
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号